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Suitable cluster definitions have allowed researchers to describe many ordering transitions in
spin systems as geometric phenomena related to percolation. For spin glasses and some other
systems with quenched disorder, however, such a connection is missing to date. Using Monte
Carlo simulations, we study the percolation properties of several classes of clusters occurring in
the Edwards-Anderson Ising spin-glass model in two dimensions. The Fortuin-Kasteleyn–Coniglio-
Klein clusters originally defined for the ferromagnetic problem do percolate at a temperature that
remains non-zero in the thermodynamic limit. On the Nishimori line, this location is accurately
predicted by an argument due to Yamaguchi [1, 2]. More relevant for the spin-glass transition are
clusters defined on the basis of the overlap of several replicas. We show that various such cluster
types have percolation thresholds that shift to lower temperature by increasing the system size, in
agreement with the zero-temperature spin-glass transition in two dimensions. The overlap is linked
to the difference in density of the two largest clusters, thus supporting a picture where the spin-
glass transition corresponds to an emergent density difference of the two largest clusters inside the
percolating phase.

PACS numbers: 75.40.Mg, 02.60.Pn, 68.35.Rh

I. INTRODUCTION

Cluster representations and droplet models provide
a framework to study critical phenomena from the ge-
ometrical perspective of percolation [3–5]. For the
Ising ferromagnet the most prominent schemes are the
Fortuin-Kasteleyn cluster representation [4, 6] as well
as a microscopic definition of Fisher droplets [7] intro-
duced by Coniglio and Klein [8, 9]. Both approaches
eventually lead to the same cluster definition. These
Fortuin-Kasteleyn–Coniglio-Klein (FKCK) clusters rep-
resent thermal fluctuations, the percolation temperature
is equivalent to the critical temperature of the ferromag-
netic phase transition and the critical exponents of this
thermal transition are linked to those of the percolation
transition [4, 9]. Furthermore, such clusters unveil inter-
esting properties of the problem that are not accessible
from the free energy of the Ising model [9]. Apart from
these physical aspects, FKCK clusters are also the ba-
sis of powerful Monte Carlo cluster methods such as the
Swendsen-Wang algorithm [10, 11] which dramatically re-
duces the critical slowing down observed in the vicinity of
the transition that affects simulations with purely local
update schemes.

In contrast to the case of the Ising ferromagnet, FKCK
clusters in models with frustration such as spin glasses
[12–15] do not have an obvious physical meaning [16],
which is a consequence of the fact that by construc-
tion the growth of such clusters signals the increase of
ferro/antiferromagnetic correlations and not ordering of
the spin-glass nature. Other types of clusters may hence
show more interesting behavior when studying such frus-
trated systems. The order parameter of the spin-glass
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transition, the overlap, is defined with respect to two
replicas. Therefore, it seems natural to consider clus-
ter definitions which include multiple replicas. Here we
investigate in detail three different types of two-replica
clusters, each of which can be linked to the overlap. The
simplest of them just groups together spin sites with iden-
tical value of the overlap. These clusters are the basis of
the Houdayer cluster algorithm [17], which is why we de-
note them as Houdayer clusters. A more elaborate cluster
definition can be extracted from a graphical representa-
tion initially proposed by Chayes, Machta and Redner
for spin systems in external fields [18, 19] that also allows
for a cluster representation of the Ising spin-glass model
[20]. Due to an additional connection to another cluster
algorithm for (dilute) spin glasses proposed by Jörg [21],
we refer to these clusters as Chayes-Machta-Redner-Jörg
(CMRJ) clusters. And thirdly, we study a cluster def-
inition which was introduced by Newman and Stein as
a generalization of the FKCK clusters to more than one
replica [22]. These structures we denote as two-replica
FKCK (2R-FKCK) clusters.

The CMRJ and 2R-FKCK clusters were already stud-
ied numerically for the three-dimensional Ising spin glass
and analytically for the Sherrington-Kirkpatrick (SK)
model which corresponds to the mean-field description
of spin glasses [20]. In three dimensions, the CMRJ and
2R-FKCK clusters are found to percolate at a tempera-
ture above the spin-glass transition, while the spin-glass
transition itself can be related to an emergent density
difference of the two largest clusters [20]. In contrast, in
two dimensions the spin-glass transition occurs at zero-
temperature, so it will be interesting to see how the per-
colation behavior changes in this scenario. A better un-
derstanding of cluster structures in spin glasses might
help to develop more efficient Monte Carlo cluster al-
gorithms for these systems, hence bringing equilibrium
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studies of larger systems into the reach of numerical sim-
ulation methods [23] which are urgently needed due to
the strong finite-size effects in spin-glass physics [24].

The rest of this article is organized as follows. In Sec. II
the Ising spin-glass model is introduced and the simula-
tion methods are described. In Sec. III we report on our
study of the FKCK clusters in a spin glass with a inter-
action distribution symmetric around zero as well as on
the Nishimori line. In particular, we compare our results
to a conjecture regarding the exact location of the tran-
sition point [2]. In the following Sections we present our
numerical results for the two-replica cluster definitions,
namely for the CMRJ clusters in Sec. IV, the 2R-FKCK
clusters in Sec. V, as well as the Houdayer clusters in
Sec. VI. Finally, Sec. VII contains our conclusions.

II. MODEL AND NUMERICAL METHODS

We consider the two-dimensional Ising spin glass with
Gaussian interactions. The Hamiltonian is given by

HJ (S) = −
∑
〈x,y〉

Jxysxsy . (1)

The system contains N spins which sit on the sites of a
square lattice of linear size L, such that N = L2. The
sum runs over all nearest-neighbor spin pairs as indicated
by the notation 〈x,y〉 for lattice vectors x and y. In
this study only fully periodic boundary conditions are
used. S denotes a configuration of Ising spins sx = ±1,
i.e., S ∈ {±1}N . The quenched interactions between the
spins are represented by bonds Jxy that are drawn from
a Gaussian distribution with standard deviation σJ and
mean J0; we write J = {Jxy} for the coupling realization.
As a consequence bonds can be ferromagnetic (positive)
or antiferromagnetic (negative). A bond is said to be
satisfied if Jxysxsy > 0 and it is broken if Jxysxsy < 0 .
If there does not exist a spin configuration such that all
bonds are satisfied simultaneously, the system is referred
to as frustrated. The two-dimensional model undergoes a
zero-temperature spin-glass transition [25–30]. The order
parameter of the spin-glass transition, the Parisi overlap
parameter [12], is defined with respect to two replicas
S(1) and S(2),

q(S(1),S(2)) =
1

N

∑
x

s(1)x s(2)x =
1

N

∑
x

qx , (2)

where qx = s
(1)
x s

(2)
x . Replicas are spin configurations

S(1),S(2), ... of a system at the same inverse temperature
β which evolve independently in time but share the same
realization of bonds. In the high-temperature phase the
absolute value of the overlap approaches zero and its dis-
tribution in the thermodynamic limit is a delta peak at
the origin. At low temperature spins have the tendency
to point in a direction such that the bonds are satisfied
and they hence freeze into suitable metastable states. As
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FIG. 1. Internal energy per bond, e, of the 2D Ising spin glass
of Eq. (1) as a function of inverse temperature β at system
size L = 128 averaged over 500 realizations of the bonds. The
data for the shifted and scaled link overlap β(ql − 1) demon-
strates that the equilibration condition of Eq. (5) is fulfilled
within error bars at all temperatures. The inset shows the
convergence to equilibrium at the lowest temperature (β = 5)
for an average over 50 disorder realizations at the lowest tem-
perature. To ensure that the system is in equilibrium we start
sampling after 4 × 105 MC steps. The dotted line illustrates
the value of the ground state energy e∞ = −0.657 393 8(4)
according to Ref. [31].

a consequence, below the spin-glass temperature the dis-
tribution of the absolute value of the overlap has a mean
which is larger than zero.

To study the model at a range of temperatures we em-
ploy Monte Carlo simulations techniques. To obtain reli-
able numerical results it is important to ensure that the
system is in equilibrium. As a reliable indicator to signal
equilibration we use a relation that was established in
[32] for short-range spin glasses. It is based on the fact
that mathematically speaking Eq. (1) defines a Gaussian
variable with a covariance that is proportional to the link
overlap, ql, i.e.

[HJ (S(1))HJ (S(2))]J = Nbql(S
(1),S(2)) (3)

for J0 = 0 and σJ = 1 [33]. Nb is the number of bonds
and [. . .]J denotes the disorder average with respect to
the bond distribution. The link overlap is given by

ql(S
(1),S(2)) =

1

Nb

∑
〈x,y〉

s(1)x s(1)y s(2)x s(2)y . (4)

This connection between covariance of the Hamiltonian
and the link overlap has important implications. One
consequence is that the energy per bond can be expressed
in terms of the link overlap [32, 33]

e = β(ql − 1) , (5)
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where e = [〈HJ (S)〉S ]J/Nb. Keep in mind that here it is
necessary to consider the disorder average with respect
to the bond distribution [. . .]J as well as the configura-
tional average with respect to the Boltzmann distribution
〈. . .〉S . When the system is initialized randomly, the en-
ergy decreases during the equilibration process and the
value of the link overlap increases as is shown in the in-
set of Fig. 1, and in equilibrium Eq. (5) is satisfied. Note
that as demonstrated by Contucci et. al. [33–36], it is
possible to derive further important properties from re-
lation (3), which underlines the significance of the link
overlap in short-range spin glasses [37].

In order to determine the overlap, we simulate in par-
allel two replicas at each temperature. A Monte Carlo
step of our procedure consists of four individual parts.
A single spin-flip Metropolis sweep, an FKCK cluster
move with a Wolff update [38], and alternatingly a Hou-
dayer [17] or a Jörg cluster move [21] at each even or odd
Monte Carlo time step, respectively. For the latter we use
a Swendsen-Wang type update rule [38] which ensures
that also smaller clusters are flipped in the percolating
phase. At the end of each Monte Carlo step we perform
an exchange Monte Carlo move [39] of replicas at neigh-
boring temperatures. The details of the different cluster
moves will be described in the Sections below. While
the replica-exchange component is mandatory to achieve
equilibration, the specific mix of different cluster and
single-spin flip moves chosen here is empirically found to
perform well, but we do not claim that this is the opti-
mal protocol for the problem. Figure 1 demonstrates that
the energy monotonously decreases with a declining slope
when lowering the temperature. At the lowest considered
temperature the energy e(β = 5) = −0.655 91(13) at sys-
tem size L = 128 is already close to that of the ground
state of the infinite system, e∞ = −0.657 393 8(4) [31].

To the extent that self-averaging is present in the
model, it is possible to reduce the number of bond real-
izations to compute the disorder averages by increasing
the system size. At the FKCK percolation transition the
Wolff cluster updates are extremely effective and we equi-
librate 2000 bond realizations for the largest considered
system size, L = 512, and up to 12 500 bond realizations
for the smallest system size, L = 64. In the lower tem-
perature region down to β = 5 the equilibration process
needs much more time. In this case we use between 500
bond realizations for the largest system size, L = 128,
and 7000 bond realizations for the smallest size L = 16.

III. THE FKCK PERCOLATION TRANSITION

In this Section we introduce essential observables
which characterize percolation using the example of
the FKCK percolation transition in the two-dimensional
Ising spin glass with Gaussian interactions. Furthermore
we numerically test the prediction of Yamaguchi [1, 2]
who conjectured an exact critical temperature for the
percolation transition on the Nishimori line.
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FIG. 2. Scaling of the wrapping probability in case of the
FKCK percolation transition of the standard 2D Ising spin
glass with J0 = 0, σJ = 1. The data collapse is achieved
according to Eq. (8) with βFK = 0.84079(17) and 1/νp =
0.749(4). The inset shows the unscaled data for the differ-
ent system sizes.

In standard random-bond percolation all bonds are oc-
cupied independently with the same probability pxy = p.
In the correlated FKCK percolation problem, on the
other hand, bonds are occupied with probability

pxy =

{
1− e−2β|Jxy| if Jxysxsy > 0

0 else
. (6)

Thus, the occupation probability depends on the spin
configuration. Occupied bonds connect spin sites which
group together in clusters. The smallest possible cluster
contains a single spin site. These clusters are denoted in
the following as FKCK clusters. Depending on the lit-
erature they are also called CK droplets [8] or FK clus-
ters [6]. Starting from this it is possible to define cluster
updates. Flipping each cluster with probability 1

2 cor-
responds to the Swendsen-Wang update rule [11]. Con-
structing only one cluster from a randomly chosen seed
site by adding bonds with the probability given in Eq. (6)
and always flipping it gives the Wolff update rule [38, 40].
By flipping a cluster we mean that each spin inside the
cluster is reversed in sign. Both, the Swendsen-Wang
as well as the Wolff cluster update define ergodic Monte
Carlo algorithms that satisfy the detailed balance condi-
tion with respect to the Boltzmann distribution [41].

In case of the Ising ferromagnet the probability of two
spins pointing in the same direction at two different lat-
tice sites, x, y, is equal to the probability that the two
lattice sites are connected by a path of occupied bonds,

〈sxsy〉S = Prob(x and y are connected

by occupied bonds) . (7)
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FIG. 3. The density of the largest cluster as a function of
inverse temperature for the FKCK percolation transition of
the standard 2D Ising spin glass with J0 = 0, σJ = 1. The
main plot shows a data collapse according to Eq. (9) with
βFK = 0.8411(5), 1/νp = 0.754(18) and βp/νp = 0.101(6).
The inset shows the unscaled data for the different system
sizes.

In other words, the two-spin correlation function is equal
to the pair-connectness function of the FKCK percolation
problem [4, 9]. Thus, the percolation transition must co-
incide with the ferromagnetic phase transition. Due to
frustration this relation is absent in spin glasses [42, 43]
and the percolation transition has no obvious physical
interpretation. (Note that these clusters are areas of sat-
isfied bonds and not of parallel spins, so they do not rep-
resent ferromagnetic order.) It occurs at a higher tem-
perature than the spin-glass transition, in the vicinity of
the dynamic damage spreading transition [16, 44], and
it shows the characteristics of a random (uncorrelated)
percolation transition [3]. Just above the temperature
1/βFK, a single giant cluster begins to form, the so-called
incipient infinite cluster. Here, βFK denotes the inverse
temperature at which percolation takes place in an in-
finitely large system. In the numerically studied finite
systems with fully periodic boundaries the condition of
percolation is satisfied if there exits a path of connected
occupied bonds that wraps around the boundary in the
horizontal direction, in the vertical direction, or in both
directions. The probability R for such wrapping to oc-
cur thus provides information about the location of the
percolation transition. Finite-size scaling (FSS) implied
that it behaves as [3]

R(β, L) = fR

(
(β − βFK)L1/νp

)
(8)

close to criticality, where fR is a scaling function. The
order parameter of the percolation transition can be de-
fined as the density of the largest cluster ρ1 (often de-
noted as ρ∞) which is given by the fraction of sites in

J0 σJ 1/νp βp/νp γp/νp βFK

0 1 0.749(4) 0.101(6) 1.7920(8) 0.84079(17)

erf−1(1/2)
√

2 1 0.750(7) 0.102(5) 1.7904(7) 0.67447(8)

bond percolation 3/4 5/48 43/24 pth = 1/2

(numerical) 0.75 0.10416 1.7916 pth = 0.5

TABLE I. Overview of the critical exponents and inverse per-
colation temperatures in case of the FKCK percolation tran-
sition. The table shows the results for the standard Ising spin
glass J0 = 0, σJ = 1 as well as for J0 = erf−1(1/2)

√
2, σJ = 1.

In the bottom line we show the exact values for random bond
percolation in two dimensions. pth denotes the percolation
threshold. The data collapse of the FSS analysis is performed
with the tool given in [46].

the cluster that contains the most spin sites. Inside the
percolating phase the largest cluster corresponds to the
infinite cluster for L → ∞. The density of the largest
clusters satisfies the scaling form [3]

ρ1(β, L) = L−βp/νpfρ1

(
(β − βFK)L1/νp

)
. (9)

In the Ising ferromagnet this observable corresponds to
the absolute value of the magnetization per site [9]. An-
other quantity of interest is the mean cluster size [9],

χp =
∑
s=1

s2n(s) . (10)

In the paramagnetic phase of the Ising ferromagnet this
quantity is equal to the magnetic susceptibility [9]. The
sum runs over all sizes (masses) of clusters, s, except the
infinite cluster; n(s) is the cluster number per site which
equals the average number of clusters of size s divided by
N . At the critical point the mean cluster size diverges as
χp(βFK) ∼ Lγp/νp , described by the exponent γp/νp [45].

In case of the standard Ising spin glass with Gaus-
sian interactions, J0 = 0 and σJ = 1, we perform
Monte Carlo simulations and measure the observables
R, ρ1 and χp of the FKCK clusters. The data col-
lapse of R and ρ1 are illustrated in Figs. 2 and 3, re-
spectively. The results for the critical exponents are
1/νp = 0.749(4) and βp/νp = 0.101(6). The estimated
critical temperature of the percolation transition, ex-
tracted from the data of R, is βFK = 0.84079(17). To
receive γp/νp we fit a power law to the data of the mean
cluster size for different system sizes at inverse temper-
ature β = 0.84085 which corresponds to an inverse tem-
perature of the Monte Carlo simulation between the es-
timates of βFK from R and ρ1. This leads to the crit-
ical exponentγp/νp = 1.7920(8). Note that in order to
compute χp we do not exclude the percolating cluster as
this was found to reduce finite-size effects, a phenomenon
which was also observed in previous work [47, 48]. The
critical parameters extracted from the data via FSS are
collected in Table I. The data collapse of the FSS analysis
are performed with the tool given in [46]. The statistical
error is computed by generating 150 bootstrap samples of
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s

10−10

10−4
n

β = βFK

n ∼ s−τ
τ = 2.0553(5)

FIG. 4. The cluster number n as a function of cluster size
s at the percolation threshold on the Nishimori line, βFK =
erf−1(1/2)

√
2 = 0.67448975 . . .. The system size is L = 4096.

On the Nishimori line the energy is e(βFK) = −J0 [51]. The
simulation gives e(βFK) = −0.674490(11), a sign that the
system is in equilibrium. The disorder average is computed
with respect to 125 bond samples.

the data and individually performing a data collapse for
each sample. The systematic error is estimated by vary-
ing the range of the considered data which is used to per-
form the collapse from (β − βFK)L1/νp ∈ [−0.35, 0.35] to
(β − βFK)L1/νp ∈ [−1, 1]. Both, the statistical and the
systematic contribution are summed to give the final es-
timate of the error.

The critical exponents are consistent with the uni-
versality class of random percolation. The correlations
which arise since only satisfied bonds can be occupied and
the influence of the varying bond strength do not change
the universality of the percolation transition. This result
is expected to be stable also when J0 6= 0 [44, 49, 50].

For the special case of the Nishimori line, the FKCK
percolation transition has been investigated by Yam-
aguchi [1, 2]. The Nishimori line is a certain set in param-
eter space of β and J0/σJ at which it is possible to analyt-
ically compute the internal energy and other quantities
via a gauge transformation [52]. Yamaguchi was able to
derive a condition for the critical bond occupation prob-
ability of the FKCK clusters, and he conjectured that it
is identical to the percolation threshold of random-bond
percolation. This conjecture provides a prediction for the
critical inverse temperature,

βFK = J0/σJ = erf−1(1/2)
√

2 = 0.67448975... . (11)

The conjecture is tested by performing simulations on
the Nishimori line with J0 = erf−1(1/2)

√
2 and σJ =

1. We carry out the same FSS scaling analysis for the
data of R, ρ1 and χp at the critical temperature, β =

erf−1(1/2)
√

2, as previously discussed for the standard
Ising spin glass. All the results are compiled in the third
line of Table I. Our estimate of the critical temperature
βFK = 0.67447(8) is consistent with the value in Eq. (11).

At the critical point the cluster number n(s) as well
as the cluster radius r(s) are expected to follow power
laws n ∼ s−τ and r ∼ s1/df , respectively. The radius of

102 104 106

s

101

103

r

β = βFK

r ∼ s1/df

1/df = 0.52727(24)

FIG. 5. The cluster radius as a function of cluster size on
the Nishimori line with βFK = erf−1(1/2)

√
2. For the data

analysis we used a logarithmic binning of the cluster sizes.
The average size of the clusters within a bin is denoted as
s and the corresponding average radius is given by r. The
system size is L = 4096. The disorder average is computed
with respect to 125 bond samples.

a cluster is defined as [3]

r(s) =

√√√√ s∑
k=1

|rk − rc|2
s

. (12)

The sum corresponds to the average Euclidean distance
of all sites rk of the cluster from its center of mass rc. For
non-percolating clusters the center of mass can simply be
derived from the average distance to the origin of the co-
ordinate system. As the origin we chose the root of the
cluster. For percolating clusters we used the algorithm
proposed in Ref. [53]. Figures 4 and 5 show the cluster

number and the cluster radius at βFK = erf−1(1/2)
√

2,
respectively. The values for τ = 2.0552(4) and for the
fractal surface dimension df = 1.8966(9) are consistent
with random percolation because the exact values are
τ = 187/91 = 2.054945 and df = 91/48 = 1.89583,
respectively. The data further supports the conjecture
from Yamaguchi of a random-bond percolation transi-
tion at βFK = erf−1(1/2)

√
2. Altogether the results are

in agreement with the idea that the FKCK transition in
Ising spin glasses belongs to the random bond-percolation
universality class.

IV. CMRJ CLUSTERS

The order parameter of the spin-glass transition, the
overlap, is defined with respect to two replicas. It is hence
natural to construct clusters related to the spin-glass
transition by considering the overlap of several replicas.
Such clusters might additionallyturn out to be useful for
designing effective Monte Carlo cluster algorithms. Pro-
posals along these lines were already put forward rather
early on by Swendsen and Wang in Ref. [39]. In the fol-
lowing, we investigate the properties of a particular type
of multiple-replica clusters. The occupation probability
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FIG. 6. Typical example of CMRJ clusters at β = 3 in ther-
mal equilibrium, extracted from a simulation of a 152 × 152
sample of the Gaussian 2D Ising spin glass using two repli-
cas. The red bonds belong to the largest cluster and and the
green bonds to the second largest cluster. Both clusters have
an opposite sign of the overlap. The blue bonds are part of
smaller clusters. Unoccupied bonds are white.

of the clusters for I replicas is given by

pxy =

{
1− exp(−2βJxy s̃xs̃y) if Jxy s̃xs̃y > 0

0 else
,

with s̃xs̃y =

I∑
i=1

s(i)x s(i)y , (13)

where i is the replica index and s̃x = (s
(1)
x , ..., s

(I)
x ) de-

notes an I-component spin. This is a generalization of
the cluster definition proposed by Chayes, Machta and
Redner [18–20] as well as by Jörg [21] to more than two
replicas. The condition Jxy s̃xs̃y > 0 enforces the con-
straint that only those bonds are occupied which are sat-
isfied simultaneously in the majority of the replicas [54].
Clusters are defined as spin sites which are connected by
a path of occupied bonds. A cluster move can then be
realized by flipping all I-component spins s̃x within the
same cluster, i.e., s̃x → −s̃x for all x inside the clus-
ter. As for the FKCK clusters, this can be done in a
single-cluster or multi-cluster fashion as in the Wolff [38]
and Swendsen-Wang [10] algorithms, respectively. Such a
procedure aims to generate equilibrium states according
to the I-replica Boltzmann distribution

P(S(1), ...,S(I)|J) = Z−IJ exp
(
−βH(I)

J

)
with H

(I)
J (S(1), ...,S(I)) = −

∑
〈x,y〉

Jxy s̃xs̃y (14)

0 1 2 3 4 5

β
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q4

q5

q1 + q2

q1 + ...+ q10

FIG. 7. Overlap of the CMRJ clusters at system size L = 128
averaged over 500 bond realizations. |q| denotes the average
value of the overlap per site which is the order parameter of
the spin-glass transition. qk is the overlap density of the k-
th largest cluster, corresponding to the density of the cluster
multiplied by the sign of its overlap. The relative spin ori-
entation of the replicas is chosen such that the sign of the
overlap of the largest cluster is always positive. We see that
the largest and the second largest cluster are anticorrelated
with respect to the sign of the overlap. The sum of the over-
lap densities of the largest clusters approaches |q| . Already
q1 + q2 is almost parallel to |q| for β > 2 .

where ZJ is the partition function of a single replica for
a given realization of the bonds J .

To check for the convergence of the corresponding
Markov chain, we need to investigate (detailed) balance
and ergodicity [41]. That detailed balance holds with
respect to the distribution (14) can be derived from
the cluster surface energy with respect to the I-replica

Hamiltonian, H
(I)
J , that is the sum of the energies of the

individual replicas. We provide this derivation in Ap-
pendix A. Since during cluster moves the overlap of any

two replicas, qx = s
(i)
x s

(j)
x , i, j = 1, 2, ..., I, i 6= j, is con-

served, such cluster flips are not ergodic, however. In case
of I = 2 the described cluster algorithm corresponds to
the method proposed by Jörg [21] which has been success-
fully applied to simulate diluted spin glasses [55]. Since
an equivalent cluster definition does also emerge from the
graphical representation of Chayes, Machta and Redner
[18–20] connected occupied components of this kind are
denoted here as CMRJ clusters [56]. In the following we
focus on the case of I = 2 which is, of course, of spe-
cial significance for spin glasses. This is due to the fact
that all spins within the same CMRJ cluster have identi-
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FIG. 8. Density ρ = s/N of the three largest CMRJ clusters
for different system sizes L. The curves shift to lower tem-
perature when the system size is increased. The height of the
peak of the second largest cluster increases whereas the peak
of the third largest cluster decreases.

cal sign of the overlap. As a consequence, it is plausible
to ask the question how these cluster are linked to the
overlap especially in connection with the spin-glass tran-
sition.

Fig. 6 illustrates an instance of CMRJ clusters of a
sample of the 2D Gaussian spin glass at β = 3 in ther-
mal equilibrium. There are mainly two large clusters. As
is illustrated in Fig. 7, this is a typical constellation at
low temperatures. This plot shows the overlap density
of the five largest clusters as well as the average over-
lap, |q| = [〈|q(S(1),S(2))|〉S ]J . The overlap density of a
cluster is defined as the density of a cluster multiplied
by the sign of its overlap. The relative orientation of the
spins of the replicas is chosen such that the largest cluster
has positive overlap. The overlap density of the second
largest cluster, q2 , is anticorrelated in sign with respect
to the largest cluster. The sum of the overlap densities
q1 + q2 is almost parallel to |q| for β > 2. This obser-
vation supports the idea that the difference in density
of the two largest clusters is proportional to |q| at low
temperature [20]. The overlap increases on lowering the
temperature and for β → ∞ it approaches one as then
the system reaches the ground state [28] and all spins are
contained in a single CMRJ cluster.

Fig. 8 shows the density of the three largest CMRJ
clusters at different system sizes. Again it is observed
that the two largest clusters contain most of the spin
sites at low temperature. The curves shift to lower tem-
perature by increasing the system size. The height of the
peak of the second largest cluster increases whereas that

1.5
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L
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FIG. 9. Scaling of the peaks of the second largest and
smaller CMRJ clusters. The upper panel shows the loca-
tion of the peak, β∗, of the k-th largest clusters as a func-
tion of system size. The lines are fits of the functional form
β∗(L) = c1 ln(L)c2 +c3, where c1,c2, and c3 are fit parameters.
The lower panel shows the density of the corresponding clus-
ters at their peak location. The density of the second largest
cluster increases in contrast to that of the smaller clusters.
The dotted lines are guides to the eye.

of the of smaller clusters decrease. This is of some signif-
icance since if the contribution of the third largest and
smaller clusters becomes negligible for L→∞ the over-
lap approaches the difference in the density of the two
largest clusters. A scenario of this type was proposed in
Ref. [20] which also provides a rigorous proof for the SK
model.

To better understand this aspect, properties of the
peaks of the densities of the largest clusters are inves-
tigated in more detail. The location and height of the
peak are extracted from the data by fitting parabolas in
the vicinity of the peaks. Error bars are obtained via
parabola fits of 250 bootstrap samples as described in
Ref. [57]. The results are depicted in Fig. 9. The lo-
cations β∗ of the peaks shift to smaller temperatures as
the system size is increased. The density of the second
largest cluster increases with system size, whereas that
of smaller clusters decreases. Therefore, the influence of
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to the eyes only.

−0.5 0.0 0.5 1.0

β − β(0.5)
L

0.0

0.2

0.4

0.6

0.8

1.0

R

L = 16

L = 32

L = 64

L = 128

L = 256

1 2

β

0.0

0.5

1.0

FIG. 11. Wrapping probability of the CMRJ clusters for dif-
ferent system sizes. The inset shows the unscaled data. The
solid black points correspond to the inverse temperatures at

which the wrapping probability is one half, R(β
(0.5)
L ) = 0.5.

The main plot shows a collapse of the data onto a single curve
obtained by a shift of the data along the x-axis by the corre-

sponding value of β
(0.5)
L .

the smaller clusters diminishes by increasing L, which is
consistent to the idea that the overlap becomes equal to
the difference in density of the two largest clusters in the
thermodynamic limit [20].

The percolation transition of the CMRJ clusters does
not fit in the framework of a random percolation transi-
tion. The latter features a single incipient infinite clus-
ter which forms at the percolation transition, while the

50 100 150 200 250

L

0.7

0.8

0.9

1.0

1.1

1/
β

(0
.5

)
L

β(0.5)(L) = b− aL−c

β(0.5)(L) = a ln(L)c + b

β(0.5)(L) = a ln(L) + b

FIG. 12. The plot demonstrates how the percolation tran-
sition shifts to lower temperature T = 1/β as the system
size is increased. The temperature at which the wrapping

probability is one half, 1/β
(0.5)
L , is plotted as a function of

L. The lines are fits of different type. The logarithmic law
β(0.5)(L) = a ln(L) + b is only consistent with the data for
large system sizes.

former shows two giant clusters that develop a density
difference at the spin-glass transition. Therefore, it is in-
teresting to investigate whether both clusters can wrap
simultaneously around the boundaries, similar to what is
observed in three dimensions [20]. The data in Fig. 10
demonstrate that this is the case for finite systems, since
on average there is more than one wrapping cluster in the
temperature region where the system starts to percolate.
For β →∞, wR is expected to approach one since in the
ground state there is only one giant CMRJ cluster left
that contains all spins. The inset of Fig. 10 shows the
crossing points β× of wR of two adjacent system sizes
from the list L = (16, 22, 32, 46, 64, 90, 128) which are ex-
pected to behave like pseudo-critical temperatures of the
problem. The crossing points shift to larger β in agree-
ment with the behavior of the peak locations shown in
Fig. 9.

An alternative definition of pseudo-critical tempera-
tures results from a consideration of the wrapping prob-
ability R. The inset of Fig. 11 depicts R for different sys-
tem sizes. It is observed that for increasing L the curves
shift to larger β along the x-axis. We define pseudo-
critical points as the inverse temperatures at which the

wrapping probability is one half, i.e., R(β
(0.5)
L ) = 0.5.

These values are determined by spline interpolation of
the data and their error bars are generated with boot-
strapping. The main plot of Fig. 11 shows a data col-
lapse of R which is obtained by shifting the data along

the x-axis by the values of β
(0.5)
L . The estimated values of

β
(0.5)
L are shown individually in Fig. 12. They can be well

described by the functional form β(0.5)(L) = a ln(L)c + b
with a = 0.260(13) b = 0.289(20) and c = 0.894(20)
where the minimal considered system size is Lmin = 16
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and the quality of the fit is Q = 0.87. A simpler log-
arithmic law with c = 1, namely β(0.5) = a ln(L) + b,
only yields good results for larger system sizes Lmin = 64
with a = 0.1978(10), b = 0.396(5) and Q = 0.60. These
fits do suggest a zero temperature percolation transi-

tion in the thermodynamic limit, since 1/β
(0.5)
L → 0

when L → ∞. Note that a power law of the form
β(0.5)(L) = b − aL−c can also be fitted to the the data,
resulting in a = 8.5(1.5), b = 8.8(1.5), c = 0.026(6) with
Lmin = 16 and Q = 0.81. This would imply a finite-
temperature transition [58] with a critical inverse tem-
perature of 8.8(1.5). However, in view of the small value
c = 0.026(6) of the exponent, a fit of the form a ln(L)c+b
appears to be much more natural. Additionally, the pure
power-law fit strongly depends on Lmin, such that already
for Lmin = 46 the error bars exceed the values of the fit
parameters. Finally, the positive curvature in the peak
locations of the second largest cluster and in the crossing
points of the number of wrapping clusters, see Figs. 9 and
10, rather support the idea of a zero-temperature transi-
tion. To sum up, our results are in good agreement with
the scenario of a zero-temperature percolation transition.

The spin-glass transition occurs at a temperature
below the percolation transition, and it is connected
to the difference in density of the two largest clus-
ters [20]. Therefore, both above discussed scenarios,
a finite-temperature or a zero-temperature percolation-
transition, are consistent with the zero-temperature spin-
glass transition in two dimensions. The pseudo-critical
temperatures that describe the spin-glass transition shift
towards zero temperature with a power-law behavior
according to TSG(L) ∼ L−1/ν [28, 29], where 1/ν =
0.2793(3) [31]. This is much faster than the asymptoti-
cally logarithmic scaling of the pseudo-critical tempera-
tures of the percolation transition as shown in Fig. 12.

V. TWO-REPLICA FKCK CLUSTERS

Another approach towards a multiple-replica cluster
definition is to connect FKCK clusters of different repli-
cas. A straightforward definition of such clusters is given
by the occupation probability

pxy =

{(
1− e−2β|Jxy|)I if Jxy s̃xs̃y > 0 and |s̃xs̃y| = I

0 else

where s̃xs̃y =

I∑
i=1

s(i)x s(i)y . (15)

This means only those bonds can be occupied which are
satisfied in all I replicas simultaneously. The occupation
probability is equal to the event that in all I replicas the
bond is occupied individually with the probability of the
FKCK clusters, see Eq. (6). In the present paper, we fo-
cus on the scenario of I = 2 and connected components
are denoted as 2R-FKCK clusters [59]. Spins within the
same 2R-FKCK cluster have the same overlap. These
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FIG. 13. Density of the three largest 2R-FKCK clusters at
different system sizes. The curves shift to lower temperature
when the system size is increased.

2R-FKCK clusters were initially proposed by Newman
and Stein with the aim of providing tools to mathemati-
cally show broken spin-flip symmetry in short-range spin
glasses at non-zero temperature [22].

Although there is rather strong numerical evidence
for a finite-temperature spin glass phase for d ≥ 3
[26, 27, 30, 60, 61] we do not have a rigorous proof. In
the case of a ferromagnet it can be shown that the ap-
pearance of a unique largest percolating FKCK cluster
corresponds to the onset of long-range order and broken
symmetry [9]. In spin glasses, FKCK percolation is a
necessary condition for broken symmetry and the occur-
rence of a unique largest 2R-FKCK cluster is a sufficient
condition [62]. Furthermore, in the SK model the differ-
ence in density of the two largest 2R-FKCK clusters is
equal to the overlap and thus directly connected to the
spin-glass transition. Note that, in case of the SK model
this is also true for the previously discussed CMRJ clus-
ters. In the three-dimensional Ising spin glass a similar
behavior is expected. Although there is some numerical
evidence in favor of this scenario [62], it is not entirely
clear if the difference in density of the two largest clus-
ters is precisely equal to the overlap or the contributions
of smaller clusters are also relevant. In two dimensions
there is no finite-temperature spin glass transition, and
it is hence of particular interest to see what happens in
this case.

Figure 13 shows the density of the three largest 2R-
FKCK clusters. In general, the percolation transition has
rather similar properties to the CMRJ one. In the vicin-
ity of the transition there are two dominating clusters
which can wrap simultaneously around the boundaries.
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FIG. 14. Properties of the peaks of the second largest and
smaller 2R-FKCK clusters. The upper panel shows the loca-
tion of the peak β∗ of the largest clusters as a function of sys-
tem size. The lines are fits of the form β∗(L) = c1 ln(L)c2 +c3
to the data. The lower panel shows the density of the clusters
at the peak locations. The density of the second largest clus-
ter increases whereas the density of the smaller clusters show
no clear trend for large system sizes.

These two largest clusters are anticorrelated with respect
to the sign of the overlap and their difference in density is
roughly proportional to the average overlap at low tem-
peratures. In Fig. 14 we present the scaling of the peaks
in the density of the second largest and smaller clusters.
As is shown in the upper panel, the peak positions shift to
lower temperatures as the system size is increased. The
lower panel visualizes the peak densities of the largest
clusters. It is visible that the height of the peak for the
second largest cluster increases. The heights of the third
largest and smaller clusters do not show a clear trend.
Therefore, the evidence for an equality between the dif-
ference in density of the two largest clusters and the over-
lap is less convincing for the 2R-FKCK clusters than in
case of the CMRJ clusters, cf. Fig. 9.

To further investigate the properties of 2R-FKCK clus-
ters, we also considered the wrapping probabilities which
are shown in Fig. 15. The data show a clear shift along
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FIG. 15. Wrapping probability of the 2R-FKCK clusters for
different system size. The upper panel shows the wrapping
probability as a function of inverse temperature β for a num-
ber of the considered system sizes L. The inset contains the
curves of the unscaled data. In the main plot there is a col-
lapse of the data onto a single curve, which was obtained by a

shift of the curves along the x-axis by the values of β
(0.5)
L . In

the lower panel, these shifts are shown as a function of L; they
can be described by a logarithmic law of the type a ln(L)c + b
where c is close to one.

the x-axis to lower temperatures as the system size is
increased. The shift is well described by a logarithmic
law, i.e. β(0.5)(L) = a ln(L)c + b with a = 0.206(14),
b = 0.859(22), c = 0.972(28) and Lmin = 16. If the
exponent is fixed to c = 1 and Lmin = 64 chosen the
result is a = 0.1908(15) and b = 0.888(7). This is sim-
ilar to the situation of the CMRJ clusters where the
slope is a = 0.1978(10). A power-law fit of the form
β(0.5)(L) = b− aL−c does not yield a satisfactory result.

The shift of the percolation transition towards zero
temperature demonstrates that there is no sufficient con-
dition for a broken spin-flip symmetry in two dimensions
at finite temperatures. This observation is in agreement
with previous numerical studies which show that there is
no finite-temperature spin-glass phase in this case [25–
27, 30, 60, 61]. Furthermore, it is consistent with the ar-
gument that is not possible to simultaneously have two
infinitly large clusters with opposing order parameter in
two dimensions in the thermodynamic limit, simply be-
cause there is not enough space [62, 63]. Note that the
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FIG. 16. Density of the three largest Houdayer clusters for
different system sizes.

appearance of a single largest percolating CMRJ cluster
would also imply broken symmetry [62].

VI. HOUDAYER CLUSTERS

Finally, we consider clusters of spin sites with the same
overlap. These geometrical overlap-cluster are used in
Houdayer’s cluster algorithm which allows one to speed
up the Monte Carlo simulation of spin glasses, at least
in two dimensions [17, 64]. These clusters are closely
analogous to geometrical clusters in case of the Ising fer-
rogment [47]. The occupation probability is given by

pxy =

{
1 if |s̃xs̃y| = 2

0 else
(16)

and the number of replicas is two. Thus, clusters are sim-
ply defined as connected components of spin sites with
identical overlap. These clusters have a vanishing sur-
face energy within the energy of the I = 2 Boltzmann
distribution, see Eq. (14), since s̃xs̃y = 0 at the cluster
surface. Therefore, flipping the spins in these clusters
in both replicas simultaneously, s̃x → −s̃x, is in agree-
ment with the detailed balance condition. Because the
two-replica energy and the overlap are conserved quanti-
ties, such cluster moves are not ergodic. Note that any
two adjacent clusters necessarily have an opposite sign of
the overlap, and the sum over all bonds along the sur-
face of the clusters is proportional to the link overlap (up
to an additive constant) [37]. The previously discussed
CMRJ and 2R-FKCK cluster are geometric subregions
of the Houdayer clusters because each Houdayer cluster
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FIG. 17. Wrapping probability of Houdayer clusters in depen-
dency of system size. The upper panel shows the wrapping
probability for various system sizes. The inset contains the
original data. In the main plot there is a collapse of the data
onto a single curve, which was obtained by a shift of the curves

along the x-axis by the values of β
(0.5)
L . The lower panel con-

tains the data for the shifts β
(0.5)
L , together with a fit of the

functional form a ln(L)c + b with Lmin = 46.

includes all connected spin sites with identical overlap, ir-
respective of whether the underlying bonds are satisfied
or not. Therefore, it might be expected that Houdayer
clusters show similar properties. In fact, Fig. 16 demon-
strates that, again, there are mainly two large clusters.
In the vicinity of the percolation transition we again find
that there is more than one wrapping cluster (not shown).
Since the occupation probability does not depend on
temperature, the wrapping probability can already be
non-zero in the high-temperature regime. The percola-
tion transition shifts to lower temperature as is shown
in Fig. 17. The shift is consistent with a fit of the form
β(0.5)(L) = a ln(L)c+ b with a = 0.73(12), b = −0.93(15)
and c = 0.59(6) with Q = 0.68 and Lmin = 46. The data
can also be fitted to a power law, β(0.5)(L) = b − aL−c
with a = 3.85(29), b = 3.4(4), c = 0.090(12), Lmin = 46
and Q = 0.56. Again the exponent c = 0.090(12) is so
small that the fit does not contradict a logarithmic law.
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FIG. 18. Overview of the shift in the wrapping probabilities
for the three cluster types, namely 2R-FKCK, CMRJ and
Houdayer. The plot shows the value of the inverse tempera-

ture at which the wrapping probability is one half R(β
(0.5)
L ) =

0.5. The lines are fits of type β(0.5)(L) = a ln(L)c + b.

VII. DISCUSSION

We have studied percolation properties of the two-
dimensional Ising spin glass with Gaussian interactions
by performing Monte Carlo simulations. In the Ising
ferromagnet Fortuin-Kasteleyn–Coniglio-Klein (FKCK)
percolation is directly linked to the thermal phase tran-
sition. In spin glasses the FKCK percolation transi-
tion occurs at a higher temperature than the spin glass
transition close to the heat-bath damage-spreading tran-
sition [65]. We find that the percolation threshold is
βFK = 0.84085(8) in case of the standard spin glass where
the mean of the Gaussian interaction distribution is zero,
J0 = 0, and the standard deviation is one, σJ = 1. The
transition belongs to the universality class of random per-
colation. On the Nishimori line [52], which is a certain
line in the parameter space of J0 and σJ , Yamaguchi
conjectured an exact inverse temperature of percolation
[1, 2]. This conjecture agrees within error bars with the
numerical data of our analysis. See also [65] for the case
of a bimodal ±J interaction distribution.

The order parameter of the spin-glass transition, the
overlap, is defined with respect to two replicas which sug-
gests to study clusters which are defined with respect to
two replicas. Thus, three different cluster types are con-
sidered, namely Chayes-Machta-Redner-Jörg (CMRJ), 2-
replica-FKCK and Houdayer clusters where spins that
belong to the same cluster have identical overlap. In
all considered cases the pseudo-critical temperature of
the percolation transition shifts to lower temperatures
as the system size is increased. This is demonstrated in
Fig. 18. The shift is well described by a functional form
of β(0.5)(L) = a ln(L)c + b as the fits demonstrate. This
behavior implies a zero temperature percolation transi-

tion in the thermodynamic limit. Furthermore, it is vis-
ible that the Houdayer clusters percolate at the highest
temperature followed by the CMRJ clusters and the 2R-
FKCK clusters at a given system size L. This relative or-
der of clusters is a consequence of the fact that the CMRJ
clusters as well as the 2R-FKCK clusters are geomet-
ric subregions of the Houdayer clusters since there only
bonds can be occupied which are satisfied in both repli-
cas. The occupation probability of the CMRJ clusters
is higher than that of 2R-FKCK which explains why the
CMRJ clusters percolate at a higher temperature than
the 2R-FKCK clusters.

In all considered cluster definitions percolation is char-
acterized by two large clusters which can simultane-
ously wrap around the boundaries close to the transi-
tion. These two largest clusters are anticorrelated with
respect to the sign of the overlap. Furthermore, at low
temperatures the mean overlap is proportional to the dif-
ference in density of the two largest clusters. In case of
the CMRJ clusters it is visible that the density of the
second largest cluster increases with system size whereas
that of the smaller clusters decreases. In this scenario,
the mean overlap equals the difference in density of the
two largest clusters in the thermodynamic limit as pro-
posed and shown for the SK model in Ref. [62]. Thus,
if smaller clusters are irrelevant the dominance of the
largest cluster over the second largest cluster is directly
linked to the spin-glass transition. It is well known that
pseudo-critical temperatures of the spin-glass transition
shift to zero temperature in a power-law fashion with
βSG(L) ∼ L1/ν [28, 29], where 1/ν = 0.2793(3) [31].
Since this power law decays much faster than the above
discussed logarithmic law, the percolation transitions will
always appear at a higher temperature as compared to
the effective spin-glass transition at a given system size.

In case of the Ising ferromagnet FKCK clusters corre-
spond to Fisher droplets and the pair-connectness func-
tion of the percolation problem is equal to the two-spin
correlation function [9]. Thus, the percolation transition
coincides with the thermal phase transition, which makes
Monte Carlo cluster dynamics such as the Swendsen-
Wang or Wolff algorithm very efficient close to critical-
ity. This relation is absent in case of the considered
two-replica cluster definitions and percolation takes place
at a higher temperature than the spin-glass transition.
At low temperatures there are mainly two large clus-
ters which contain almost all spins. To identify clusters
where the pair-connectedness function is linked directly
to the overlap-correlation function seems to be an im-
portant goal for further studies. In other words, 〈qxqy〉S
has to be proportional to the probability that the lattice
sites x and y are connected by a path of occupied bonds
for a given realization of interactions J . If these clus-
ters could be constructed in a computationally efficient
way this would probably also lead to an effective cluster
algorithm to study the spin-glass transition. In terms
of cluster updates which reduce equilibration time and
autocorrelation time it might also be useful to consider
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more sophisticated computational methods. An interest-
ing Ansatz would be to define multiple-replica clusters
within the framework of the generalized cluster algorithm
[66, 67]. Furthermore, it also appear promising to con-
sider the use of machine learning techniques to identify
clusters or to look at other non-local update schemes [68–
71]. It hence remains an attractive but so far elusive goal
to arrive at a full description of the spin-glass transition
in terms of the percolation of clusters that directly prop-
agate the correlations.
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Appendix A: I-Replica Cluster Algorithm

In this section we show that the I-replica cluster moves
satisfy the detailed balance condition with respect to the
I-replica Boltzmann distribution. Note that a similar
derivation in case of the Ising ferromagnet can be found
in [72]. The I-replica Hamiltonian for given a realization
of bonds J is given by

H(S) = H
(I)
J (S(1), . . . ,S(I)) = −

∑
〈x,y〉

Jxy s̃xs̃y

where s̃xs̃y =

I∑
i=1

s(i)x s(i)y

and s̃x = (s
(1)
x , ..., s

(I)
x ). We denote a certain spin state

Sµ = (S
(1)
µ , . . . ,S

(I)
µ ) with the index µ and its energy by

Hµ = H(Sµ). The cluster algorithm works as follows.

First, each bond is occupied with probability p
(µ)
xy , where

p
(µ)
xy = 0 if Jxy s̃

(µ)
x s̃

(µ)
x ≤ 0. Occupied bonds connect spin

sites that group together in clusters. The smallest clus-
ters are isolated spins and each site belongs to a exactly
one cluster. Of all clusters we randomly choose a fraction
f ∈ [0, 1] and we put all spin sites within these clusters
into a single set called A. Often the fraction is set to
f = 0.5. The rest of the spins belong to the complement
of A, Ac = A \ N , where N is the set that contains
all sites x, such that |N | = N . By this procedure we
have created a partition which separates all sites into
two sets. The cluster move is performed by flipping all

I-component spins inside A, i.e. s̃
(µ)
x → −s̃(µ)x , ∀x ∈ A.

Afterwards, the system is in spin state Sν .

We now we derive the occupation probabilities pxy
that lead to transition probabilities between the states
that satisfy the property of detailed balance. The condi-

tion of detailed balance is given by [73]

T (µ→ ν)

T (ν → µ)
=
P(Sν |J)

P(Sµ|J)
= exp {−β (Hν −Hµ)} . (A1)

Here, T (µ → ν) denotes the transition probability from
spin state Sµ to spin state Sν and T (ν → µ) is the
probability of the inverted transition. The weight of
the states within the I-replica Boltzmann distribution is
given by P(Sν |J) and P(Sµ|J), respectively. The right
hand side of Eq. (A1) depends on the energies Hµ and
Hν . States µ and ν only differ from one another by the

flipped spins inside of A, i.e., s̃
(ν)
x = s̃

(µ)
x ∀x ∈ Ac and

s̃
(ν)
x = −s̃(µ)x ∀x ∈ A. Due to the global spin-flip sym-

metry of the Hamiltonian, H(S) = H(−S), neighboring
spins within the identical set A or Ac contribute the same
energy in both states. Thus, the energies of the states are

Hµ = H(A)
µ + ∂Hµ +H(Ac)

µ ,

Hν = H(A)
ν + ∂Hν +H(Ac)

ν

= H(A)
µ + ∂Hν +H(Ac)

µ .

Here, H(A) is the contribution to the energy of spins in-
side A, H(Ac) is the contribution from spins which be-
long to Ac and ∂H is the energy contribution of the sur-
face of the partition. This surface is defined in terms of
bonds which connect spins from A with those of Ac, i.e.
∂A = {(x,y) ∈ 〈x,y〉 : x ∈ A ∧ y ∈ Ac}. The energy
difference of both states is proportional to the surface
energy,

(Hν −Hµ) = −2∂Hµ,

where we made use of the relation ∂Hν = −∂Hµ, which
results from the fact that bonds in the surface which are
broken in state µ are satisfied in state ν and vice versa.
By broken and satisfied bonds we mean that Jxy s̃xs̃y ≤ 0
and Jxy s̃xs̃y > 0, respectively. The energy of the surface
can be written in terms of broken and satisfied bonds

∂Hµ = −
∑
∂A+

µ

|Jxy s̃(µ)x s̃(µ)y |+
∑
∂A−

µ

|Jxy s̃(µ)x s̃(µ)y |

= −
∑
∂A+

µ

Jxy s̃
(µ)
x s̃(µ)y +

∑
∂A+

ν

Jxy s̃
(ν)
x s̃(ν)y .

Here ∂A+
µ denotes the section in the surface where bonds

are satisfied in state µ and ∂A−µ the section with broken

bonds. As already mentioned, ∂A+
µ = ∂A−ν and ∂A−µ =

∂A+
ν .

Now the left hand side of equation (A1) is considered.
The transition probability from state µ to ν can be writ-
ten as

T (µ→ ν) = K(A ∧Ac|µ)
∏
∂A+

µ

(
1− p(µ)xy

)
.

The first factor K(A∧Ac|µ) denotes the probability that
the sets A and Ac are constructed given the state µ. The
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second factor is the probability that satisfied bonds in the
surface between A and Ac are not occupied. Bonds in
the surface which are broken in state µ are not included
because they are not occupied with probability one. The
probability of the inverted transition from ν to µ is given
by

T (ν → µ) = K(A ∧Ac|ν)
∏
∂A+

ν

(
1− p(ν)xy

)
.

Except for the bonds in the surface the identical bonds
are broken or satisfied in both states µ and ν. As a
consequence, the probability to construct the sets A and
Ac starting from the state ν is equal to the probability to
construct the same sets starting with µ, i.eK(A∧Ac|ν) =
K(A ∧Ac|µ). By inserting our results for the transition
probabilities as well as the surface energy into Eq. (A1)
one obtains,

K(A ∧Ac|µ)
∏
∂A+

µ

(
1− p(µ)xy

)
K(A ∧Ac|µ)

∏
∂A+

ν

(
1− p(ν)xy

) =

exp

−2β

∑
∂A+

µ

Jxy s̃
(µ)
x s̃(µ)y −

∑
∂A+

ν

Jxy s̃
(ν)
x s̃(ν)y

 ,

which can be rewritten as

∏
∂A+

µ

(
1− p(µ)xy

)
exp

{
−2β

∑
∂A+

µ
Jxy s̃

(µ)
x s̃

(µ)
y

} =

∏
∂A+

ν

(
1− p(ν)xy

)
exp

{
−2β

∑
∂A+

ν
Jxy s̃

(ν)
x s̃

(ν)
y

} .
This equation is satisfied if

pxy = 1− exp(−2βJxy s̃xs̃y)

and the condition of detailed balance is fulfilled. For
I = 2 the algorithm is equivalent to the algorithm of
Jörg [21] and the occupied bonds are equal to the blue
bonds in the CMR representation [20].
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