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The spread of a contagious disease clearly is affected by the contact patterns of infected individuals.
But it remains unclear how individual contact patterns interact with the infectious and non-infectious
stages through which a disease progresses over time. Here, we investigate this interplay of contact
patterns and disease progression using real-world physical proximity data from the Copenhagen
Networks Study. We find from the data that the number of encounters following a potential infection
event varies significantly over time — with clear daily and weekly variations of encounter probability.
These variations can accelerate or slow down the spread of infectious diseases, depending on how
they are aligned with the infectious periods. Remarkably, the resulting resonance strongly depends
on the latent period, which, although non-infectious and often neglected, is key to the degree of
alignment of the infectious period with the weekly modulation. We demonstrate that the resonance
effect can be reproduced by a generative process with a time-dependent encounter rate that reflects
the daily and weekly modulation found in the data. Including this non-Markovian generative process
into a well-mixed, mean-field spreading model, we show that resonances between contact patterns
and disease progression can change the basic reproduction number considerably — in our case by
up to 20%. Surprisingly, a change in latent period can thereby make epidemic spread stronger even
if the individual infectiousness is unaltered.

As contagious diseases are passed on through contacts,
disease spread is naturally shaped by details of the spa-
tial and temporal contact behavior of those involved. If
infected individuals do not have any sufficiently close
and long contacts while being infectious, the disease will
not be passed on. If instead they happen to be at sev-
eral gatherings with many close-by encounters, there will
likely be many secondary infections. It is hence evident
that epidemic spread is affected by both, spatial features
(with whom and how close) and temporal features (how
often and how long) of contact behavior. To develop
a faithful description of epidemic spreading processes,
these basic empirical facts need to be taken into account.

The vast majority of studies in epidemic modelling, in-
cluding most of the recent works in response to the Coro-
navirus pandemic, rely on a description based on com-
partmental models such as Susceptible, Infected, Recov-
ered (SIR) and extensions thereof [1]. These models suc-
cessfully capture the general mechanism and overall be-
havior of disease spread as described by spatio-temporal
averages, but naturally fail to incorporate the effect of
contact behavior. On the other hand, agent-based mod-
els do incorporate such contact behavior explicitly [2, 3],
but they hence depend on the availability of actual tem-
poral contact data [4, 5], good surrogate data [6], or ap-
proximations of the underlying spatio-temporal features
of contact behavior [7].

Approaches used to uncover salient spatio-temporal
features of human contact behaviour range from direct
experiments [8, 9] to analyses of interaction data that
can be related to human contact behavior [e.g., mobility
data [10]]. There is mounting evidence that human con-

tact networks feature a high level of heterogeneity across
individuals. Examples include the high variability of the
influence of individuals [11] or strong clustering of either
nodes [12] or links [13] that indicate strong interactions
in local neighborhoods. In addition, interactions were
shown to cluster in time in so-called bursts [14, 15]. Al-
though the time lags between interactions range from
minutes to years, the temporal patterns are often rather
predictable [16] and feature a high degree of regularity [8].
This spurs the hope that generic aspects of contact pat-
terns can be reduced to simple statistical descriptions.

Here, we analyze real-world physical proximity data to
extract signature effects of the contact behavior on dis-
ease spread without the need to rely on compartmental
or agent-based models with their inherent assumptions.
In particular, we develop a statistical description of indi-
viduals interacting with an unspecified community that
allows us to identify resonance effects between statistical
contact patters and disease progression. Depending on
the precise alignment of the infectious period with regions
of statistically high or low encounter rates, the resulting
number of potentially infectious encounters does not only
depend on the infectious period, but remarkably also on
the latent period (the time before becoming infectious)
— an effect which is omitted in common disease models.
We show that this resonance effect can be explained by
weekly modulations in the contact pattern statistics and
that this resonance shapes epidemic spread.
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Figure 1. Real-world contact data can be represented
as encounter trains. a: Co-location times correspond to
time stamps at which a person is in contact with other peo-
ple. Here we consider a disease for which contacts need to
be closer than 2 meters and longer than 15 minutes to entail
an appreciable transmission probability. b: In the encounter
train, every time point corresponds to the start time of a
contact that satisfies those conditions. c: Observables de-
rived from the ensemble of encounter trains of all individuals
reveal characteristic temporal features: The daily encounter
rate, averaged across individuals and weeks, shows a clear
day-night cycle and a dependence on the day of the week.
d: The distribution of inter-encounter intervals (IEI), aggre-
gated across all trains, shows that encounters are clustered in
time, but also span multiple orders of magnitude. It can be
well described by a Weibull distribution with shape parameter
0.36 and scale parameter 3029.69.

RESULTS

We base our analysis on data about physical prox-
imity among university students (Fig. 1a) collected in
the Copenhagen Networks Study (CNS) [17] and com-
plement our results with additional data from SocioPat-
terns [18] in the Supplementary Information. To fil-
ter the data for sufficiently close and long contacts (see
Methods), we only include contacts that are closer than

2 meters and longer than 15 minutes, which is in line with
common guidelines used by regulators in the context of
the COVID-19 pandemic but suitable choices for other
pathogens will vary. From the remaining contact events,
we extract for each individual a list of their contact start-
ing times (encounters). These encounter trains are a
point-process-like representation that forms the basis for
our statistical analysis of individual contact patterns.

The collection of encounter trains reveals inhomo-
geneous contact patterns with a clear time-dependent
structure (Fig. 1b). When averaging across trains and
weeks of the experiment, we find this supported through
a time-dependent encounter rate (Fig. 1c) — a feature
that can be well reproduced by an inhomogeneous Pois-
son process. The collection of encounter trains fur-
ther reveals strong temporal clustering — contact bursts
— which becomes apparent through the distribution of
inter-encounter intervals (Fig. 1d). This clustering can
be well described by a Weibull distribution, with a high
probability for short inter-encounter intervals (creating
bursts) that slowly decays for long inter-encounter in-
tervals (separating bursts). These temporal features are
consistent with previous observations [14, 15, 19] and
may be summarised as reoccurring, inhomogeneous con-
tact patterns with local contact bursts.

In addition to these direct temporal features of con-
tact patterns, we find strong variability across and within
participants. This can be seen from the encounter statis-
tics (Fig. 2a,b): The distribution of encounters per train
can be modeled by an exponential, which indicates large
variability across participants (Fig. 2a). This is a sign
of heterogeneity between individuals — with many indi-
viduals who have low encounter rates and few individu-
als who have high encounter rates — and is consistent
with previously observed non-Gaussian degree distribu-
tions of contact networks [17, 20]. The distribution of
encounters per day again shows an exponential tail but
it also shows a dominant peak at zero (Fig. 2b). This is
a sign of variability over time — with many individuals
having no valid encounters throughout complete days but
some individuals occasionally aggregating large numbers
of encounters. Depending on these aspects of encounter
statistics and, in particular, on whether such aggregates
of encounters fall into an individuals’ infectious period
(or not), contact patterns can profoundly affect disease
spread.

To understand in more detail the effect of contact pat-
terns on the spread of a particular disease, we assume
that individuals can only be infected at recorded encoun-
ters (Fig. 2c). Whereas this neglects infections from out-
side the data set, it ensures that the temporal features
of contact behavior are properly accounted for (see SM,
Fig. S4 for additional controls). Once infected, an in-
dividual is assumed to be in an exposed state (not yet
infectious), from which they progress into the infectious
state after a latent period Tlat. After a further time Tinf ,
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Figure 2. The number of potentially infectious encounters is determined by a resonance between the time
course of the disease progression and the temporal features of contact patterns. a, b: Encounters are clustered in
time, which is reflected in (exponential) probability distributions of encounters on the scale of trains and days, εtrain and εday.
c: Resonance between disease progression and contact behavior: After an infection, encounters during the latent period are
not infectious, but those during the infectious period are potentially infectious. Due to the temporal clustering at reoccurring
times, the number of contacts that fall into the infectious period varies — depending on the time of the initial infection. This
dependence is lost if the temporal features are weakened through randomization (marked yellow in all panels). Note that the
randomization preserves the variability across individuals but destroys the temporal structure per individual (c.f. panels a & b:
randomizing only suppresses large clusters in a). d: The conditional encounter rate describes the daily number of encounters a
person has, on average, given that an encounter happened at time 0. The area under the curve yields the number of potentially
infectious encounters (shaded regions for the two points marked in e, f). After randomization (yellow line), this area remains
constant independently of the latent period. The peak at 7 days indicates that contact patterns statistically reoccur on a weekly
basis. e, f: The number of potentially infectious encounters εinf depends on the combination of the latent and the infectious
period. The difference to the randomized data (yellow, 100%) reflects both, the daily structure that creates the oscillations
along the bottom, for short infectious periods, and the weekly structure that is responsible for the transition across the diagonal
when infectious period and latent period sum up to seven days. e: Cut plane through panel f for a 3-day infectious period that
shows εinf in absolute numbers.

the individual recovers and is no longer infectious. Since
the probability of infection upon encounter depends on
many factors (such as viral load, duration of contact,
environmental conditions, hygiene measures), many of
which are either out of control or scope of this study, we
concentrate our analysis on the number of potentially in-
fectious encounters εinf — the number of all encounters
that occurred during the infectious period.

The number of potentially infectious encounters
depends on both latent and infectious periods

To investigate the interplay of latent and infectious
periods, we first consider a deterministic disease progres-
sion, where every infection results in the same latent pe-
riod (Tlat) and the same infectious period (Tinf), with a
fixed total disease duration of Ttotal = Tlat+Tinf (Fig. 2c).
In this case, we can enumerate all possible disease onsets
for different combinations of latent and infectious peri-
ods (Fig. 2e-f) and compare the resulting mean number

of potentially infectious encounters εinf to that for ran-
domized encounter trains (yellow lines). In particular, we
randomize the encounter times within each train but pre-
serve the total number of encounters per train (Fig. 2a).
These randomized encounter trains serve as a reference
by removing temporal features, while leaving the vari-
ability across individuals intact.

How the latent period affects εinf is demonstrated on
the example of infectious diseases with a 3-day infectious
period (Fig. 2e). We observe that a latent period of 1–4
days results in a lower εinf , compared to randomized en-
counter trains, whereas a latent period of 4–7 days leads
to a higher εinf . Because the randomized trains exhibit
no dependence on the latent period (the yellow line is
almost constant), we conclude that temporal features of
contact patterns are indeed responsible for the periodic
modulation of εinf .

Clearly, the periodic modulation of εinf depends on our
chosen example and εinf changes with the infectious pe-
riod (Fig. 2f). To compensate for the trivial increase of
εinf with an increase in the infectious period Tinf, we con-
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Figure 3. Every spatio-temporal feature has a unique
impact on the number of potentially infectious en-
counters. To showcase the effect of individual features, we
generated surrogate data. a, top row: For the surrogate
data, the generating processes (columns) have an individual,
unique rate for every participant, matching the data. Bot-
tom row: The processes generating data for every partici-
pant share a common rate that matches the mean rate across
participants in the data. Thus, the variability across individ-
uals is lost and εinf is systematically lower than in the top
row. Left column: Surrogates from a homogeneous Poisson
process lack reoccurring contact patterns and contact bursts.
Center column: Surrogates from an inhomogeneous Poisson
process with a rate matching the weekday-dependent rate of
the data, c.f. Fig. 1c reproduce reoccurring contact patterns
but lack contact bursts. Right column: Surrogates from
a renewal process (with Weibull-distributed inter-encounter
times, c.f. Fig. 1d), lack reoccurring contact patterns but re-
produce contact bursts. b: The conditional encounter rate
reflects the spatio-temporal features. Variability across indi-
viduals increases the conditional encounter rate (individual
vs. common rate of the generating processes). Reoccurring
contact patterns cause daily and weekly periodicity (Poisson,
inhom.), while contact bursts cause a steep peak around zero
(Weibull).

sider the relative change of εinf compared to randomized
trains for which εinf depends on Tinf but not on Tlat. In
the (Tlat, Tinf) plane, one can clearly see periodic modu-
lations between regions of low (blue) and high (red) εinf .
However, the regions smear out with increasing Tinf , and
a few noteworthy transitions can be found for certain
parameter combinations: One transition occurs when a
total duration of Tlat + Tinf = 7 days is exceeded (large
triangles, spanning almost the entire figure). Another
transition occurs at Tlat = 7 days. Most prominently,

along the line of small Tinf < 1 day, we find a daily mod-
ulation between very high and low estimates, an effect
that diminishes with increasing Tinf .

The unexpected dependence of εinf on the latent
period can be explained by a resonance between

contact patterns and disease progression

To understand how changes of the latent period result
in periodic modulations of εinf , we determined the con-
ditional encounter rate as the average rate of encounters
conditioned on an initial encounter at time 0 (Fig. 2d,
see Methods). This rate shows how likely encounters are,
given an encounter occurred a certain time ago. We find a
strong peak around 0 , indicating that immediately after
an encounter there is a high chance for more encounters
(contact bursts). We also find periodic modulations be-
tween high and low encounter rates, both, on the scale of
days and weeks (note the peak at 7 days). The modula-
tions indicate statistically reoccurring contact patterns:
The 7-day peak, for instance, can be explained by the
pattern of regular but inhomogeneous encounter rates
across weekdays (Fig. 1c). These regular contact pat-
terns are again lost for randomized encounter trains (yel-
low line).

If we interpret the initial encounter as an infection,
then the conditional encounter rate implies periods of
statistically high and low encounters after infection. For
a particular disease progression (with given latent and
infectious period) we can thus obtain an estimate of
the potentially infectious encounters εinf by integrating
the conditional encounter rate within the infectious pe-
riod (Fig. 2d, shaded areas). We demonstrate this for
two disease realizations with the same infectious period
(Tinf = 3 days) but different latent periods: The blue
area (Tlat = 2 days) is much smaller than the red area
(Tlat = 6 days), because in the latter case, the infectious
period covers the 7-day peak. In other words, the disease
progression resonates with a statistically high number of
encounters.

To develop a deeper understanding of the period modu-
lations in εinf, we distinguish two main timescales that we
find in the conditional encounter rate: days and weeks.
Let us first consider short infectious periods on a scale
below one day. Because of the daily modulation in the
conditional encounter rate, small changes in the latent
period can align the short infectious period either with
a local (1-day) minimum or maximum. This results in
a resonance on the scale of days, and is reflected in the
daily modulation of εinf (Fig. 2f, blue and red regions
near the bottom). This effect is due to the day-night cy-
cle affecting participants’ routines, and it diminishes as
the infectious period increases, because multiple peaks of
the conditional encounter rate get covered.

When considering longer infectious periods on a scale
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of multiple days, we find that changes in the latent period
may cause the infectious period to cover the 7-day peak
in the conditional encounter rate (or not). As a conse-
quence, combinations of latent and infectious period with
a total duration below 7 days result in low εinf (large blue
triangle), whereas a total duration above 7 days — but
with a latent period below 7 days — results in high εinf

(large red triangle). For deterministic disease progression
in general, if Tinf is smaller than a given periodic struc-
ture in the conditional encounter rate, changes of Tlat will
determine whether or not Tinf covers (local) extrema, and
εinf will alternate depending on Tlat.

Resonance effects can be reproduced for
inhomogeneous Poisson processes with distributed

mean rates

To better understand the resonance effect, we isolate
the influence of particular features of human contact be-
havior. We focus on how particular temporal features
(reoccurring contact patterns and contact bursts) affect
the mean number of potentially infectious encounters εinf

and the conditional encounter rate. We again use εinf

obtained from randomized encounter trains, where tem-
poral features have been destroyed, as a baseline. To
match this baseline, we first generate contact trains as
homogeneous Poisson processes (Fig. 3a, left column).
As anticipated, εinf does not depend on Tlat.

However, we find a dependence of εinf on the details
of how we constrained the rate of the Poisson process:
When processes share a common rate across individu-
als (bottom), εinf is about 40% lower than when every
process has an individual rate (top). In both cases, the
rates were constrained by data, either to the mean en-
counter rate across individuals (bottom) or directly to
the underlying distribution (top). This shows that εinf

only matches the data when the variability of encounter
rates across individuals is captured.

To study how resonance effects depend on reoccurring
contact patters, we generate inhomogeneous Poisson pro-
cesses with a rate that is again constrained by the data
and, in addition, time-dependent (cf. Fig. 1c). Follow-
ing our experience from homogeneous Poisson processes,
we generate the processes once with common encounter
rates (bottom) and once with individual encounter rates
(top, see Methods). The resulting color maps of εinf show
the characteristic resonance patterns and the conditional
encounter rate exhibits periodic modulations on the scale
of days and weeks (Fig. 3), where — as expected — the
model with individual encounter rates is in better agree-
ment with the data.

To study how resonance effects depend on contact
bursts, as suggested by the measured distribution of
inter-encounter intervals (Fig. 1d), we generate renewal
processes with inter-encounter intervals drawn from the

Weibull distribution. Here, we incorporate the variabil-
ity across individuals by adapting the scale parameter of
the Weibull distribution while preserving the shape (see
Methods). The resulting color maps reveal that the la-
tent period affects εinf predominantly for low values, as
only the initial peak in the conditional encounter rate of
the data is reproduced by the Weibull renewal process.
This peak corresponds to the short-term behavior upon
initial contact. However, since inter-encounter times are
uncorrelated random samples, the Weibull renewal pro-
cess only captures this short-term behavior and does not
reproduce the characteristic resonance patterns. We con-
clude that the contact bursts are responsible for the ini-
tial peak in the conditional encounter rate and predomi-
nantly affect the leftmost part of the color maps, whereas
the reoccurring contact patterns shape the periodic struc-
ture of the conditional encounter rate and, thereby, the
overall pattern of the color maps.

Resonance effects remain relevant also when
individual disease progression is more variable

So far, we have focused on deterministic disease pro-
gression, where latent and infectious periods had a pre-
cise duration. For a more realistic view, we want to al-
low for the latent and infectious periods to vary from
case to case (Fig. 4). To that end, we draw the periods
Tlat and Tinf from a gamma distribution, but we keep
the mean duration fixed. The case-to-case variability is
then parameterized through the dispersion parameter k
(Fig. 4a).

By adjusting k, the gamma distribution can interpo-
late between delta-distributed periods (k → ∞), which
coincide with deterministic progression as in Fig. 2, and
exponentially distributed periods (k = 1), as commonly
assumed in computational epidemiology for mathemati-
cal tractability [7]. On the one hand, delta-distributed
periods seem like a convenient but unrealistic simplifica-
tion. On the other hand, exponentially distributed pe-
riods seem more realistic, but they imply an artificially
high probability of short durations, which in turn leads
to realizations where the infectious period either starts
shortly upon infection or has close-to-zero duration (ex-
ample traces in Fig. 4a). Because a realistic distribution
is difficult to infer from epidemiological data, we argue
for a dispersion parameter somewhere in between delta
and exponential.

To investigate how case-to-case variability affects the
number of potentially infectious encounters εinf , we con-
sider the probability distribution P (εinf) (Fig. 4c), and
revisit the two examples already presented in Fig. 2. For
the delta-disease (k → ∞, top), the red (Tinf = 3 days,
Tlat = 6 days) and blue (Tinf = 3 days, Tlat = 2 days)
distributions exhibit a peak at zero, they are broad, and
have a long tail. Comparing red and blue, we find that
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Figure 4. Resonance effects remain relevant also
when disease progression varies from person to per-
son. a, b: To include person-to-person variability, we draw
both latent and infectious periods from gamma distributions
characterized by the dispersion parameter k, which interpo-
lates between exponential (k = 1) and delta (k → ∞) dis-
tributions. For small k, Tlat and Tinf differ in duration from
realization to realization — across individuals, the probabil-
ity to be infectious at a given time is smeared out. As k
increases, the periods vary less around their expected value
and the disease progression eventually becomes deterministic
(c.f. Fig. 2). c: Probability distributions of potentially infec-
tious encounters εinf for k → ∞ (top) and k = 10 (bottom).
When randomizing trains, the probability of zero-infectious
encounters is suppressed. d: Mean number of potentially in-
fectious encounters εinf as a function of k for the two examples
from Fig. 2. For k → ∞, we recover the result for determinis-
tic disease progression (dashed lines), where the latent period
induces a notable difference between the two examples. For
smaller k, the resonance effects remain relevant but the differ-
ence decreases, see also Supplementary Information Fig. S3.

the latent period determines the height of the peak at
zero as well as the position of the bulk distribution, and,
thereby, determines the mean number of potentially in-
fectious encounters (dashed vertical lines). The mean
values clearly differ. Again comparing with the random-
ized encounter trains (yellow line), we find no peak at
zero, a shorter tail, and no dependence on the latent pe-
riod (the respective randomized lines fall on top of each
other). Importantly, a peak at zero implies that the in-

fected individual does not pass on the infection, so that
the disease becomes more likely to die out if case numbers
are low.

Changing to the non-deterministic disease progression
(k = 10, Fig. 4c bottom), the distribution from ran-
domized data is barely affected. However, the red and
blue distributions are more similar to each other, but
also broader and smoother than for the the delta-disease.
This can be explained by gamma-distributed periods
acting as a smoothing kernel along both dimensions of
Fig. 2f, where variability in the infectious period directly
affects εinf, while variability in the latent period affects
εinf through the resonance effect. Consequently, we ex-
pect that with decreasing dispersion parameter k, the
mean number of potentially infectious encounters be-
comes independent of the mean latent period. Indeed,
when considering εinf as a function of k, we find that the
estimates for our two examples approach each other, as
k decreases (Fig. 4d).

Note that our analysis has a lower bound in k once
realizations of disease progression (latent + infectious
period) cannot find sufficiently many initial encounters
to fit into the finite duration of the experiment (4 weeks
for CNS). However, using other examples with smaller la-
tent and infectious periods (where we can acquire enough
statistics), we show that the two extreme cases meet for
k ≈ 1 (see Supplementary Information Fig. S3).

Resonance effects shape epidemic spread

To demonstrate how the described resonance effect
shapes epidemic spread, we devise a mean-field spreading
process with resonance-driven infections (Fig. 5a). Here,
the epidemic starts from a single infected individual. For
each infected individual, we generate encounters accord-
ing to the the conditional encounter rate (resonance in-
cluded) or according to a randomized control (resonance
neglected). Importantly, infected individuals undergo de-
terministic disease progression, where during the infec-
tious period secondary infections are created from en-
counters with a constant probability (see Methods). Be-
cause of the constant probability of infection, the mean
number of secondary infections is proportional to εinf and
thereby shaped by resonance.

However, the pace of epidemic spread is not solely gov-
erned by the number of secondary infections. Apart from
a larger number of secondary infections, a shorter time
from initial infection to secondary infections also accel-
erates the spread. Since this generation time is directly
influenced by the latent period, we expect the latent pe-
riod to determine the absolute pace of spread. We find
this supported in Fig. 5b, where shorter latent periods
result in a faster increase of daily new cases, compared
to longer latent periods. However, when comparing the
mean-field model with and without resonance effects, we
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find that resonances can increase (Tlat = 2 days) or de-
crease (Tlat = 6 days) the pace of the spread by up to
20%.

The modulation of epidemic spread due to resonance
can be understood through the expected number of sec-
ondary infections (Fig. 5c). The mean number of sec-
ondary infections per individual (the basic reproduction
number R0) is — by construction — proportional to
εinf; hence, it shows the same modulation as a function
of the latent period. These modulations of R0 explain
the different pace of spread with and without resonance
(Fig. 5b, solid vs. opaque lines) since R0 is proportional
to the pace of epidemic spread at a given generation time.

It is illustrative to additionally consider a naive esti-
mate Rnaive with the false assumption of a fixed gener-
ation time. Whereas such an estimate does not directly
reflect R0, it quantifies the pace of epidemic spread that
can be compared across different latent periods (Fig. 5b,
blue vs. red). Indeed, it confirms the expectation that the
spread is slower for longer latent periods. In addition, we
find resonances to cause modulations of Rnaive (shaded
regions, red vs. blue). This highlights that changes in the
latent period dominate the pace of disease spread while
resonance effects shape it.

DISCUSSION

In summary, we analyzed physical proximity data
of university students from the Copenhagen Networks
Study and found that contact patterns can resonate with
disease progression (Fig. 2). These resonances arise from
periods of statistically high and low encounter rates,
which can be attributed to reoccurring contact patterns
and variability in the encounter rates across individuals
(Fig. 3). Surprisingly, contact bursts seem less relevant
for disease models with a latent period.

The temporal structure of contact patterns shapes epi-
demic spread in several ways. We found that, compared
to randomized data, it makes infection chains more likely
to die out when case numbers are low (Fig. 4c), which
affects the robustness of the spreading process. This ro-
bustness, however, is only relevant for low case numbers
and does not directly determine the pace of epidemic
spread. In this regard, we showed that beyond the trivial
dependence on the generation time the pace of epidemic
spread can be substantially increased or decreased by res-
onance effects (Fig. 5). Using our mean-field model, we
were able to separate the two effects. This emphasizes the
importance of the temporal structure of contact patterns
for assessing the robustness and the pace of epidemic
spread.

Our individual-based perspective enables us to discover
so-far unexplored effects of contact patterns on disease
progression based on the following assumptions. For one,
we assume encounter trains to be independent, neglecting
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Figure 5. Temporal resonance shapes mean-field epi-
demic spread. a: Sketch of the mean-field model with subse-
quent infections due to one initial infection, assuming a basic
reproductive number of R0=3. b: Daily new cases (logscale)
for disease progression with Tinf = 3 days and different latent
periods Tlat. When temporal features are destroyed through
randomization, case numbers are biased (faint lines). c: The
bias corresponds to the difference of R (shaded regions) when
derived from the original data with temporal features (blue)
compared to the randomized data (yellow). Note the differ-
ence between the basic reproduction number R0 (which is
the true expectation value of the number of secondary infec-
tions) and a naive estimate of the reproduction number from

case numbers R̂naive (which falsely assumes a fixed generation
time).

correlations due to the temporal network, which implies
that individuals interact with a mean field and restricts
our analysis to an individual-based perspective. More-
over, we treat multiple encounters with the same individ-
ual inside the infectious interval as independent contri-
butions. This has negligible effects on our conclusions of
how contact patterns affect disease spread as long as dis-
ease transmission has a sufficiently low probability, such
that multiple encounters merely increase the probability
of transmission. Further, we share a common assump-
tion in computational epidemiology and consider binary
disease states (infectious or not), which neglects time-
dependent viral loads. Therefore, it is consistent to also
neglect the duration of contacts (otherwise, the probabil-
ity of infection would be proportional to the integral of
the viral load over the contact duration). Altogether, we
arrive at our point-like representation of encounter trains
that allows us to create generative models and surrogate
data, exposing the origin of resonance effects between
disease progression and contact patterns.

We develop our results at the example of data from the
Copenhagen Networks Study, but we expect our conclu-
sions to apply to a broad range of settings of human in-
teraction. To confirm our main findings, we repeated our
analysis with a complementary data set [9] from sociopat-
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terns.org, which was recorded differently (using ”near
field chips”), in a different country (France) and for a
different social group (office workers). Since we find con-
sistent results (Supplementary Information, Fig. S2), we
expect that resonance effects appear in various contexts
that give rise to reoccurring contact patterns.

Our results emphasize the relevance of including tem-
poral features when modelling disease spread. To re-
produce those temporal features of contact behavior, we
had to introduce non-Markovian contact dynamics in
the form of inhomogeneous encounter rates or Weibull-
distributed inter-encounter intervals. In fact, the lat-
ter was previously used to study the effect of contact
bursts on disease spread [21]. It was found that Weibull-
distributed inter-encounter intervals have a drastic effect
on the epidemic threshold for disease models without a
latent period, which can be attributed to the frequency
of small inter-encounter intervals [22] and is consistent
with our observation of a peak near zero in the condi-
tional encounter rate (Fig. 2). Our results suggest that
considering the more general case of non-zero latent pe-
riods causes shifts in the epidemic threshold that depend
on the latent period. As such, this motivates future work
to study resonance effects in complex networks.

In addition, we also considered non-deterministic dis-
ease progression in the form of gamma-distributed la-
tent and infectious periods (Fig. 4), which highlights the
complex interplay of temporal features from both con-
tact behavior and disease progression. We found that,
as disease realizations become less deterministic, the im-
pact of reoccurring contact patterns on the number of
potentially infectious encounters is smeared out. Impor-
tantly, the vanishing impact of resonances also occurs for
exponentially distributed latent and infectious periods.
While for exponential disease progression it was shown
that non-Markovian spreading dynamics can be mapped
onto effective Markovian models [23], such a mapping
is elusive for non-exponential disease progression. This
implies, however, that resonance effects as well as so-far
unknown effects that could derive from non-Markovian
contact behavior are likely not captured by traditional
models of exponential disease progression.

The resonance effect between contact patterns and dis-
ease progression has implications for non-pharmaceutical
interventions through individual behaviour. Because we
identified statistically reoccurring contact patterns as the
dominant source of resonance, interventions could be de-
signed so that contacts predominantly take place during
times when individuals are likely not infectious. As an
example, if a hypothetical disease had exactly two days
latent period and three days infectious period, an inter-
vention could encourage individuals to only meet people
at a specific day of the week — which then have zero
chance to pass on the infection. The scenario changes
to one where the probability of subsequent infections can
be reduced if latent and infectious period are drawn from

known distributions. This emphasizes how important it
is to know the actual time-course of a disease, so that
individuals can adapt their contact patterns and non-
pharmaceutical interventions can be designed to actively
exploit resonance effects.

Conversely, the resonance effect may be one part of
the gain function in viral evolution. From an evolution-
ary perspective, a virus could increase its spreading by
adapting the latent period. Compared to an increase of
the infectious period, this could be beneficial since the
latent period remains unnoticed by the host, precluding
measures like self-isolation.

METHODS

Our methods are publicly available [24] and applied to
open-access data-sets [9, 17].

Extracting contact behavior from real-world
physical proximity data

Consider data composed of a list of co-locations (phys-
ical proximity) described by (i) timestamp, (ii) user id
A, and (iii) user id B. We first sort the co-location times
into unique lists for all id pairs (A,B) and (B,A). For each
valid id A, we then iterate over all B and the associated
list of co-location times for (A,B) to construct pairwise
contacts by merging successive co-location times. We
thereby construct lists of contacts for each participant A,
where each contact is defined through its starting time
si and its duration Di, resulting in {(si, Di)}A.

From the lists of contacts, we construct a point-
process-like representation for each participant that we
call encounter train (see Fig. 1). Throughout the
manuscript, an encounter refers to the starting time of a
contact. The encounter train of participant A is the time-
sorted list of all contact starting times and can formally
be written as

T (t) =
∑
i

δ(t− si) (1)

The data from the Copenhagen Networks Study [8, 17]
is based on Bluetooth signals between phones of indi-
viduals that participated in the study. The published
data is a list of interactions described by (i) a times-
tamp, (ii) user id A (iii) user id B (which can be negative
if the interaction is with a device outside of the study
or an empty scan), and (iv) the received signal strength
indicator (RSSI, Bluetooth signal strength). The RSSI
can be considered as a proxy for interaction distance, es-
pecially since all participants used the same device [8],
with an RSSI ≈ −80 corresponding to a distance of
about 2 m ± 0.5 m. We consider RSSI < −80 to indi-
cate interactions within each time window to be further
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than 1.5 m apart at all times, and exclude them. Con-
sequently, we filter the raw data to only include those
interactions that are within the study (user id B ≥ 0)
and have RSSI ' −80. The data set covers a duration of
28 days, with a temporal resolution is δt = 5 min, for 675
encounter trains.

Time-dependent encounter rate

Because encounter trains are a point-process-like repre-
sentation, we can define an encounter rate as the number
of encounters in a window of size ∆t. Assuming statis-
tical independence between weeks and between partici-
pants, we determine the time-dependent encounter rate
by averaging the number of encounters in a time windows
of size ∆t = 1 h throughout the week (i.e. first hour of
a Sunday until last hour of a Saturday) across weeks of
the experiment and across participants. Statistical errors
are calculated on the level of participants using standard
delete-m jackknife error analysis.

Distribution of number of encounters

From the encounter trains, we can directly obtain the
distribution of the number of encounters in given time
window. Here, we focus on two cases. The total num-
ber of encounters is the number of encounters measured
per encounter train and the respective distribution is ob-
tained from the sample of trains. The daily number of
encounters is the number of encounters of individuals
during a day. The distribution of daily number of en-
counters is obtained by counting for each train the sum
of encounters for every day in the experiment. Statisti-
cal errors are calculated on the level of participants using
standard delete-m jackknife error analysis.

Inter-encounter interval (IEI)

In order to study temporal clustering and contact
bursts, we determine inter-encounter intervals (IEIs). An
IEI is defined as the interval between consecutive en-
counter times. Because each encounter train has a dif-
ferent number of encounter times (nj), it contributes a
different number of IEIs (mj = nj − 1). Since we are in-
terested in the statistics of the contacts, each encounter
has the same statistical weight independent of the en-
counter train of origin. Consequently, the distribution of
IEIs is simply the distribution over all observed intervals.
Statistical errors are evaluated on the level of observed
intervals using delete-mj jackknife error analysis.

Conditional encounter rate

To investigate how contact patterns interact with dis-
ease spread, it is useful to ask how many encounters an
infected individual might have after they were infected.
Thus, in addition to the time-dependent encounter rate,
we also evaluate a time-dependent encounter rate con-
ditioned on having a contact at time t = 0. This con-
ditional encounter rate is constructed by iterating over
all encounters of each encounter train. For each en-
counter, we construct a time-dependent encounter rate
with the time resolution of the experimental data and a
selected length (typically 10 days) or, if this does not fit
into the remaining duration of the experiment, whichever
duration is left. We then average over all these time-
dependent encounter rates taking into account their dif-
ferent lengths. Statistical errors are calculated on the
level of encounters using delete-mj jackknife error anal-
ysis.

Randomizing trains

To obtain surrogate data (without resonance effects)
that we can compare against, we randomize encounter
trains that preserve person-to-person variability but de-
stroy temporal correlations in the data: For every en-
counter train, we preserve the number of encounters (and,
thus, person-to-person variability), however, for each en-
counter we draw a new random start time within the
duration (and at the temporal resolution) of the experi-
ment.

Approximating contact behavior with point process
models

We consider two models that capture different tem-
poral aspects of the individual contact behavior statis-
tics: An inhomogeneous Poisson process and a Weibull
renewal process. In both cases, we constrain the mod-
els with specific aspects of the data and create artificial
encounter trains with matching duration (for CNS this
is 28 days) and matching number of trains. We distin-
guish between models with common rates across trains
and those with individual rates per train to match the
empirical distribution of the data (Fig. 2b).

The inhomogeneous Poisson process is a Poisson pro-
cess with a time-dependent rate. The rate is constrained
by the week-averaged encounter rate r(t) (Fig. 1c) with
time resolution of the data. In our model with common
rates, we generate each encounter train by thinning [25],
where we start from an initial event 7 days in the past,
generate subsequent events from a homogeneous Pois-
son process at rate rmax = maxt[r(t)], and accept events
at time t with the probability r(t)/rmax. In our model
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with individual rates, we do the same but rescale individ-
ual encounter rates as ri(t) = r(t)εitrain/

∑
i ε

i
train, where

εitrain is the total number of encounters of the respective
train from the data.

The Weibull renewal process is a renewal process with
Weibull-distributed inter-encounter intervals with the
goal to reproduce the statistics of the inter-encounter in-
tervals (IEIs). Motivated by previous models [21], we de-
scribe the one-point statistics of IEIs as a Weibull distri-
bution (cf. Fig. 1d) with fit parameters (shape, scale) =
(0.36, 3029.69). For each train, independent realizations
are generated with a renewal process that starts 7 days
in the past (to ensure equilibration) and creates subse-
quent times by drawing a random IEI from the Weibull
distribution. In our model with common rates, all re-
newal processes share the same parameters as above. In
our model with individual rates, we adjust the mean
rate of the Weibull renewal process, which is propor-
tional to the inverse scale, by adjusting the scale param-
eter of the individual Weibull distribution as scalei =
scale

∑
i ε

i
train/ε

i
train.

Disease models

We consider a disease that progresses in three discrete
states after infection, first exposed, then infectious, and
recovered. Throughout the states, infectiousness is bi-
nary, either infectious or not. The duration within the
exposed state is called latent period and the duration
within the infectious state is called infectious period. The
duration of each period is drawn from uni-variate distri-
butions that define the class of the disease model.

We first consider deterministic disease progression,
where the periods are drawn from delta distributions and,
hence, always the same. This model would be most in-
tuitive to a patient who expects that different stages of
a disease will last for a certain time. However, it is quite
different to the common Markov model of disease pro-
gression, in which the periods would be drawn from expo-
nential distributions — as expected for Poisson processes
that describe many state transitions, from radioactive de-
cay to chemical reactions.

We further consider non-deterministic disease progres-
sion, where the periods are drawn from a gamma dis-
tribution with dispersion parameter k. The dispersion
parameter allows us to interpolate between a delta distri-
bution (k →∞) and an exponential distribution (k = 1).
Clinically observed distributions of periods between dis-
ease states are neither delta distributed nor exponential
distributed and may be best described by distributions
with a clear peak but vanishing probability at zero, such
as log-normal distributions or gamma distributions with
dispersion parameters in between (1,∞).

Estimating potentially infectious encounters

Because the probability of an infection depends on
many factors, we focus on all encounters that have a
chance to be infectious. We therefore define potentially
infectious encounters as the number of encounters during
the infectious period.

For the deterministic disease progression with latent
period Tlat and infectious period Tinf , we iterate over
all encounters si across all trains, check whether the
disease progression still fits into the duration Texp of
the experiment (si + Tlat + Tinf ≤ Texp), and if true
count the number of subsequent encounter sj for which
Tlat < sj − si < Tlat + Tinf .

For the non-deterministic disease progression with dis-
persion parameter k, we generate 106 samples of disease
realizations, each of which yields one estimate of εinf.
For each sample, we first draw a random realization of
the disease progression (T i

lat, T
i
inf). We then draw dis-

ease start times si from the ensemble of all encounters
until we find an si such that the disease progression is
within the remaining duration of the experiment, i.e.,
si + T i

lat + T i
inf ≤ Texp. Only once we have a valid dis-

ease start time si, we count the number of subsequent
encounters within the infectious period as above. If, for
any disease realization, we need to draw more than 1000
disease start times until we find a valid one, we abort the
estimation for the set of parameters (Tlat, Tinf , k). By
this procedure to first draw and fix a random realization
of the disease progression, we avoid a bias towards small
periods that would occur due to the finite period of the
experimental data.

Errors are calculated using the delete-mj jackknife
method because the relevant statistics is the ensemble
of encounters which differs from train to train.

Mean-field model for epidemic spread

To study the effect of resonances on the pace of epi-
demic spread, we devise a mean-field model that ne-
glects potential interactions with non-susceptible indi-
viduals in an infinite population. In our model, each in-
fected individual generates independent encounter trains.
Encounter trains are generated as inhomogeneous Pois-
son processes that start at the infection with a time-
dependent rate given by the conditional encounter rate
(Fig. 2d) to model the statistically reoccurring contact
patterns. Encounters that occur during the infectious
period cause secondary infections with a chosen proba-
bility p. Every secondary infection then generates a new
encounter train and so on. This model can be considered
as a continuous-time non-Markovian branching process.

For simplicity, we restrict our example to deterministic
diseases with fixed latent and infectious periods.
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Jackknife error estimation

To estimate statistical errors of our results, we use jack-
knife error estimation while carefully taking into account
the size of the left-out data set.

The basic idea of the jackknife method is to estimate
from some data X = {x1, . . . , xg} the variance of an

observable Ô = f(X) using a systematic resampling
approach [26]. Jackknife samples Oj are generated by

systematically leaving out data, e.g., Ôj = f(X̄) with
X̄ = {x1, ...., xj−1, xj+1, ...xg}. Importantly, here each
xi can be a block of (differently many) data points. While
typically theses blocks have the same size m (delete-m
jacknife), they could have different sizes mj (delete-mj

jackknife), which will be relevant for some of our cases.
From the jackknife samples, one can show that bias-
reduced estimators of the mean and variance are given
by [27]

ÔJ =

g∑
j=1

1

hj

(
hjÔ − (hj − 1)Ôj

)
,

σ̂2
J =

1

g

g∑
j=1

1

hj − 1

(
hjÔ − (hj − 1)Ôj − ÔJ

)2

, (2)

where hj = (
∑g

j=1mj)/mj , and Ô = f(X) is the naive
estimate. For blocks of equal size, mj = m, we have
hj = g and this simplifies to

ÔJ = gÔ − g − 1

g

g∑
j=1

Ôj ,

σ̂2
J =

g − 1

g

g∑
j=1

Ôj −
1

g

g∑
j=1

Ôj

2

. (3)

In our case, the data X is the set of all encounter trains
and in the resampling step we leave out individual en-
counter trains. Since trains include differently many en-
counters, this can results in removing blocks of differ-
ent sizes. In particular, all observables that derive from
the number of encounters, e.g., εinf or P (εinf), require
the delete-mj analysis, (2), to estimate the statistical
error. On the other hand, for observables that depend
on time-binned data, e.g., the time-dependent rate, each
encounter train has the same size given by the number
of time bins during the recording such that the delete-m
analysis, (3), is sufficient to estimate the statistical error.
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[20] M. Génois, C. L. Vestergaard, J. Fournet, A. Panisson,
I. Bonmarin, and A. Barrat, Data on face-to-face con-
tacts in an office building suggest a low-cost vaccination
strategy based on community linkers, Network Science 3,
326 (2015).

[21] P. Van Mieghem and R. van de Bovenkamp, Non-
Markovian Infection Spread Dramatically Alters the
Susceptible-Infected-Susceptible Epidemic Threshold in
Networks, Phys. Rev. Lett. 110, 108701 (2013).

[22] N. Masuda and P. Holme, Small inter-event times govern
epidemic spreading on networks, Phys. Rev. Research 2,
023163 (2020).

https://doi.org/10.1007/978-3-319-50806-1
https://doi.org/10.1007/978-3-319-50806-1
https://doi.org/10.1007/978-3-319-50806-1
https://doi.org/10.1038/460687a
https://doi.org/10.1038/460687a
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1007/s41109-019-0230-4
https://doi.org/10.1103/PhysRevE.103.052304
https://doi.org/10.1103/PhysRevE.103.052304
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1073/pnas.1602803113
https://doi.org/10.1073/pnas.1602803113
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1073/pnas.2012326117
https://doi.org/10.1073/pnas.2012326117
https://doi.org/10.1038/nphys1746
https://doi.org/10.1038/nphys1746
https://doi.org/10.1103/PhysRevE.68.036122
https://doi.org/10.1038/nature09182
https://doi.org/10.1038/nature09182
https://doi.org/10.1038/nature03459
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1038/s41597-019-0325-x
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1017/nws.2015.10
https://doi.org/10.1017/nws.2015.10
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.1103/PhysRevResearch.2.023163
https://doi.org/10.1103/PhysRevResearch.2.023163


12

[23] M. Starnini, J. P. Gleeson, and M. Boguñá, Equiva-
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SUPPLEMENTARY INFORMATION

In the Supplementary Information, we provide additional controls to verify the robustness of our results in the main
manuscript. In particular, we provide a reanalysis of our main data set where we only consider participants for which
we can ensure a continuous participation in the experiment (Sec. ), as well as an analysis of an additional, independent
data set (Sec. ). Both analyses fully support our main results. In addition, we provide complementary analyses of
our main data set. These include (i) a more detailed analysis of shorter latent and infectious periods compared to
the example considered in the main manuscript that allows us to reach the low-dispersion regime (Sec. ), and (ii) an
analysis that verifies that our conclusions remain valid for infections from outside of the study group (Sec. ).

Control regarding continuous contribution of participants

In the main manuscript, we use the full published data set of the Copenhagen Networks Study [17], covering the
physical proximity data of 675 participants. Upon closer inspection, there are periods both at the beginning and
the end of the experiment without entries for some of these 675 participants. Since entries also occur for Bluetooth
signals with unknown devices, this may indicate irregularities in the contact behavior of some of the participants, e.g.,
incomplete participation of individuals.

In order to make sure that our results are not affected by such boundary effects, we reanalyzed the data and
included only the contact trains of those individuals for which any Bluetooth signal was recorded on both the first
and last day of the study (Fig. S1). Technically, we achieved this easily by restricting our analysis to those IDs for
which timestamps were recorded within the first day (timestamp < 1 · 24 · 60 · 60s) and the last day (timestamp
> 27 · 24 · 60 · 60s), reducing the data set to 533 contact trains.

This control analysis fully supports our quantitative results from the main manuscript (Fig. S1) such that we can
rule our artifacts from boundary effects of incomplete participation. In particular, we observe a matching weekly
structure of the encounter rate (Fig. S1a), a matching distribution of inter-encounter intervals that can be fitted with
a Weibull distribution (Fig. S1b), and a matching conditional encounter rate (Fig. S1c). Consequently, both mean
potentially infectious encounters for deterministic disease progression (Fig. S1d and f) as well as for non-deterministic
disease progression (Fig. S1e and g) match our main results (Figs. 2 and 3 in main manuscript).
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Figure S1. Control regarding continuous contribution of participants Here, we excluded those trains that did not have
any encounters during the first or last day. This results in 533 instead of 675 trains. Panels match key figures from the main
manuscript. Results are consistent. The fitted Weibull distribution has shape parameter 0.37 and scale parameter 3161.95.
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Analysis of an alternative data set

To further challenge the robustness of our results, we repeated our analysis on a completely independent data
set. Here, we consider contact data recorded at one of the office buildings of the French Institute for Public Health
Surveillance InVS [20]. This data is recorded with a different technique, namely so-called near-field chips that only
record signals in close proximity (. 5 m) and avoid to threshold the Bluetooth signal. Moreover, the temporal
resolution of contacts is 20 s as opposed to 5 min in the main manuscript. In addition, the data is recorded for a
different social group, namely adults within an office building. Last, the data is recorded in another country (France)
by a different collaboration (SocioPatterns). The data set spans 2 weeks of recording 145 participants (two thirds of
the staff agreed to participate).

The analysis of this completely independent data set provides completely consistent results to those presented in
the main manuscript (Fig. S2). When comparing the results, we have to highlight that the available statistics for
this data set are much smaller due to smaller duration and smaller number of participants. However, we clearly
see the expected weekly structure in the encounter rate (which is here again dominated by working days because of
office hours), the distribution of inter-encounter intervals that is well described by a Weibull distribution, as well as
the typical conditional encounter rate with a peak at 7 days. Consequently, also the results for both deterministic
and non-deterministic disease progressions are consistent with out main findings albeit confined to shorter latent and
infectious periods due to the shorter experimental duration. We conclude that the additional data set fully supports
our results in the main manuscript.
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Figure S2. Main results for other data set. Because the recording lasted only two weeks, the duration of
disease that can be sampled to estimate the dispersion were limited to the fast disease progression. The fitted
Weibull distribution has shape parameter 0.22 and scale parameter 675.03.
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Example with smaller latent and infectious periods provides additional insight on low-dispersion regime of
non-deterministic disease progression

In the main manuscript, we repeatedly consider the example of disease progression where the expected infectious
period was Tinf = 3 days and the expected latent period Tlat was either 2 or 6 days. We chose this example as it
illustrates well the resonance effect on the scale of multiple days. However, we were not able to sample the dispersion
relation for small k values (more variability across disease realizations) because the 28-day duration of the data
becomes too short once the periods of disease progression are close-to exponentially distributed (k → 1).

To avoid this issue (and to illustrate the resonance on shorter timescale), we here compare with another hypothetical
example of a “faster” disease progression, where Tinf = 0.5 days and Tlat is either 1 or 1.5 days (Fig. S3). In this case,
expected periods are very short so that even realizations with periods that severely exceed their expected value fit
into the 28-day duration.

We find a few noteworthy aspects: First, the absolute value of potentially infectious encounters εinf is much lower
for faster disease progression. This is due to the much shorter infectious period. However, the relative deviation from
the randomized surrogate data is consistent between the two examples. Second, we now find that the longer latent
period (1.5 vs. 1.0) leads to fewer potentially infectious encounters (red vs. blue). This is just a result of the chosen
latent periods: choosing an even longer latent period would result in a respective decrease of εinf (e.g. 2.0 vs 1.5,
cf. Fig. 2f main manuscript). Third, as expected, as k → 1, the resonance effect vanishes and the estimates of εinf

overlap for different latent periods, because individual disease realizations become very variable (cf. Fig. 4a).
We can obtain even more information from the distributions of potentially infectious encounters (Fig. S3). Here,

we notice that distributions obtained from data for both slow and fast disease progression share similar features that
distinguish them from distributions obtained from randomized encounter trains: Those distributions obtained from
contact data features distinct peaks for zero potentially infectious encounters and heavy tails towards large number
of potentially infectious encounters. The peaks at zero clearly depend on the chosen latent period and are partly
responsible for the differences in the mean. However, beyond affecting the mean, these peaks at zero εinf also affect
the robustness of the disease spread: Compared to randomized contact trains, more contact trains obtained from data
have a much higher chance of zero secondary infections such that disease spread from a single infection is much less
robust compared to randomized trains (Poisson statistics).

Beyond such robustness effects that are relevant only for low incidence, the distributions obtained from contact data
are more variable than for randomized trains when compared in the high-dispersion regime. In particular, distributions
obtained from contact data stretch to much higher εinf which resembles so-called super spreaders. As expected, the
probability of both low and high εinf increases with decreasing dispersion because the resulting gamma distribution
features increased probability for both shorter and longer infectious periods. Consequently, one may expect that for
lower dispersion the distributions obtained from contact data and randomized data become more similar as confirmed
by our example of short latent and infectious periods (Fig. S3, fast disease spread).



17

0 50 100
10 6
10 5
10 4
10 3
10 2
10 1
100

D
is
tr
ib
ut
io
n k=1 slow

Pot. inf. encounters

0 50 100
10 6
10 5
10 4
10 3
10 2
10 1
100

D
is
tr
ib
ut
io
n k=10 slow

0 50 100
10 6
10 5
10 4
10 3
10 2
10 1
100

D
is
tr
ib
ut
io
n k slow

0 50 100
10 6
10 5
10 4
10 3
10 2
10 1
100

D
is
tr
ib
ut
io
n k=1 fast

Pot. inf. encounters

0 50 100
10 6
10 5
10 4
10 3
10 2
10 1
100

D
is
tr
ib
ut
io
n k=10 fast

0 50 100
10 6
10 5
10 4
10 3
10 2
10 1
100

D
is
tr
ib
ut
io
n k fast

2 / 3
6 / 3
2 / 3 (surrogate)
6 / 3 (surrogate)

slow

10 1 100 101 102 103 104 105

Dispersion k

25

30

1 / 0.5
1.5 / 0.5
1 / 0.5 (surrogate)
1.5 / 0.5 (surrogate)

fast

10 1 100 101 102 103 104 105

Dispersion k

4.0

4.5

Po
t.
in
f.
en

co
un

te
rs

Po
t.
in
f.
en

co
un

te
rs

Figure S3. Example with smaller latent and infectious periods provides additional insight on low-dispersion
regime of non-deterministic disease progression. Here, we compare the example from the main manuscript (slow,
Tinf = 3 days and Tlat either 2 or 6 days) with a hypothetical fast disease progression (Tinf = 0.5 days and Tlat either 1 or 1.5
days) and show both the mean number of potentially infectious encounters as a function of the dispersion parameter k of the
gamma-distributed latent and infectious period (top) as well as their distributions for selected k. Due to the finite duration
of the recording, the accessible low-dispersion regime is determined by the mean latent and infectious period, because for low
dispersion large periods quickly exceed the finite duration. For faster disease progression (smaller latent and infectious period),
we observe resonances on smaller timescales (cf. Fig. 2 main manuscript) and in addition reach the low-dispersion regime
of exponentially distributed periods (k = 1) commonly assumed in epidemiological simulations. As one can see more clearly
for faster disease progression, the mean number of potentially infectious encounters approach each other in this low-dispersion
regime, which can only be anticipated from the results for slower disease progression. This implies that resonance effects will not
be present for exponentially distributed latent and infectious periods but only for more realistic non-exponentially distributed
ones with higher dispersion. In addition, one can see that estimates of mean potentially infectious encounters for randomized
surrogate data in both cases of slow and fast disease progression are independent of dispersion, such that randomized encounter
trains destroy resonance effects.
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Infections from outside the study group

To check the effect of contacts that could take place with people who were not part of the study, we investigate
disease onsets that do not directly follow the contact patterns observed in the data (Fig. S4). In our analysis of the
main manuscript, an infection could only originate from an encounter with another participant in the data set. Here,
we keep the original encounter trains (to evaluate potentially infectious encounters) but the disease onset can occur
at any time, due to a hypothetical contact with an external person. We focus on the resulting distribution and the
mean of potentially infectious encounters εinf (Fig. S4).

We distinguish the following different possibilities of disease onset:

internal: Onsets occur as in the main manuscript only at encounters recorded in the data set. This naturally
incorporates the spatio-temporal structure of encounters, in particular their temporal inhomogene-
ity (Fig. 1c, main manuscript) and their variability across participants (Fig. 2a, main manuscript).

external
i):

Onsets occur completely random, at random times for random participants. This neglects both
temporal inhomogeneity of encounters and their variability across individuals.

external
ii):

Onsets occur at random times with probability proportional to the encounter rate (Fig. 1c, main
manuscript) for random participants with probability proportional their total number of encounters
(Fig. 2a, main manuscript). This incorporates both the (averaged) temporal inhomogeneity of
encounters and the variability across individuals.

external
iii):

Onsets occur at random times with probability proportional to the encounter rate (Fig. 1c, main
manuscript) but for uniformly random participants. This incorporates the (averaged) temporal
inhomogeneity of encounters but neglects the variability across individuals.

external
iv):

Onsets occur at uniformly random times for random participants with probability proportional
their total number of encounters (Fig. 2a, main manuscript). This neglects the temporal inhomo-
geneity of encounters but incorporates the variability across individuals.

Once an onset has been chosen, the disease progression is modeled as in the main manuscript. We stick to the
examples of gamma-distributed latent and infectious periods with k = 10 to evaluate potentially infectious encounters.
In particular, we consider the prime example from the main manuscript with Tinf = 3 days and Tlat = 2/6 days where
resonances between disease progression and contact patterns causes clear differences in the number of potentially
infectious encounters for internal disease onsets (cf. Fig. 4 in main manuscript).

Comparing the different version of disease onset (Fig. S4), we can attribute clear effects to both the temporal
inhomogeneity of the onset time as well as the variability of onset times across individuals. Please note that in all
cases the encounter statistics of the actual encounter trains did not change — all we change is the statistics of the
disease onset time. Please note further that the results for different version of disease onset represent the extreme
scenario where all disease onsets originate from external sources.

Comparing the distributions of εinf for fixed Tlat (Fig. S4a and Fig. S4c each), we notice that those distributions
that best resemble the shape of internal disease onset are those where external disease onset statistics incorporate the
variability across individuals (external ii and iv). This can be explained by the fact that also for internal disease onset
more onsets occur for contact trains with more encounters, which in turn increases the probability of higher εinf and
thereby also the mean εinf. It appears that for the overall shape of the distribution, as well as the leading order of its
mean value, it is not necessary that disease onsets occur with the same temporal inhomogeneity as true encounters
for the chosen infectious periods (this may change for very small infectious periods though).

Comparing further the results of specific disease onsets for different Tlat (Fig. S4b comparing solid vs opaque
symbols), we notice that incorporating the temporal inhomogeneity into the disease onset (external disease ii and iii)
seems relevant for resonance effects that cause differences in the mean of εinf for the selected latent periods. This can
be explained by the observation reported in the main manuscript that reoccurring contact patterns are the main cause
for resonance effects. The results for the extreme scenarios of external infections thus fully support our conclusions
from the main manuscript.
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Figure S4. Infectious encounters for external infections In our analysis in the main manuscript, we preserved the
temporal features by constraining disease onsets to available encounters. a: Distribution of potentially infectious encounters
for non-deterministic disease progression (k = 10). 6 days latent period. b: Comparison of the mean ε̄inf between 6 days latent
period (dark) and 2 days latent period (light). c: Same as a), but 2 days latent period.
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